<|lI!

XL, Fortran Advanced Edition for Mac OS X

Language Reference

Version 8.1

SC09-7863-00

<|lI!

XL, Fortran Advanced Edition for Mac OS X

Language Reference

Version 8.1

SC09-7863-00

Note!

Before using this information and the product it supports, be sure to read the general information under

First Edition (December 2003)

This edition applies to IBM XL Fortran Advanced Edition Version 8.1 for Mac OS X (Program 5724-G13) and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure
to include your entire network address if you wish a reply.

compinfo@ca.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990, 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

The XL Fortran Language .

XL Fortran for Mac OS X
Language Standards .
Fortran 95 .
Fortran 90 . . .
Fortran 2003 Draft Standard .

Other Standards and Standards Documents .

Typographical Conventions

How to Read Syntax Diagrams .
Sample Syntax Diagram

Using Examples

Fundamentals of the XL Fortran

Language .

Characters .

Names .

Statements.

Statement Keywords
Statement Labels.

Lines and Source Formats
Fixed Source Form .
Free Source Form
IBM Free Source Form.
Conditional Compilation .

Order of Statements and Execution Sequence .

Data Types and Data Objects .
Data Types .
Type Parameters and Spec1f1ers
Data Objects .
Constants . .
Automatic Objects .
Intrinsic Types
Integer .
Real .
Complex
Logical .
Character .
BYTE
Derived Types
Input/Output
Determining Type for Derlved Types
Record Structures .
Union and Map .
Typeless Literal Constants
Hexadecimal Constants
Octal Constants .
Binary Constants
Hollerith Constants.
Using Typeless Constants.
How Type Is Determined .
Definition Status of Variables
Events Causing Definition

© Copyright IBM Corp. 1990, 2003

[EEN

NN U1 O s e e W

. 10
.11
.11
.11
.11
.12
.15
.17
.17
. 19

.21
.21
.21
.21
.22
.22
.22
.22
.24
. 26
. 28
.29
.32
. 33
. 37
. 38
. 45
. 48
. 52
. 52
. 53
. 53
. 54
. 54
. 57
. 57
. 58

Events Causing Undefinition
Allocation Status
Storage Classes for Varrables
Fundamental Storage Classes
Secondary Storage Classes
Storage Class Assignment

Array Concepts .
Arrays . .

Bounds of a D1rnensron

Extent of a Dimension . .

Rank, Shape, and Size of an Array
Array Declarators e
Explicit-Shape Arrays . .

Examples of Explicit-Shape Arrays

Automatic Arrays . .

Adjustable Arrays .

Pointee Arrays
Assumed-Shape Arrays .

Examples of Assumed- Shape Arrays .
Deferred-Shape Arrays

Allocatable Arrays .

Array Pointers
Assumed-Size Arrays . .

Examples of Assumed-Size Arrays
Array Elements .

Notes .

Array Element Order .

Array Sections

Subscript Triplets

Vector Subscripts . .

Array Sections and Substrrng Ranges

Array Sections and Structure Components .

Rank and Shape of Array Sections.
Array Constructors .

Implied-DO List for an Array Constructor .

Expressions Involving Arrays

Expressions and Assignment .
Introduction to Expressions and Assignment
Primary
Constant Expressions . .
Examples of Constant Expressmns
Initialization Expressions . .
Examples of Initialization Expressmns
Specification Expressions . .
Examples of Specification Expressmns
Operators and Expressions
General.
Arithmetic.
Character .
Relational .
Logical .
Primary
Extended Intrinsic and Deflned Operatlons

. 60
. 61
. 62
. 62
. 63
. 63

. 65
. 65
. 65
. 66
. 66
. 67
. 68
. 68
. 68
. 69
. 69
. 69
. 70
. 70
.71
.72
.72
. 74
. 74
.75
.75
.75
.77
. 78
.79
.79
.81
. 81
. 82
. 83

. 85
. 85
. 86
. 86
. 87
. 87
. 88
. 88
. 89
.90
. 90
. 90
.93
.93
. 95
. 97
.97

iii

How Expressions Are Evaluated
Precedence of Operators .
Using BYTE Data Objects
Intrinsic Assignment .
Arithmetic Conversion
WHERE Construct.
Interpreting Masked Array A531gnments
FORALL Construct
Interpreting the FORALL Construct
Pointer Assignment . .
Examples of Pointer Ass1gnment
Integer Pointer Assignment.

Control Structures
Statement Blocks
IF Construct .
Example .
CASE Construct
Examples.
DO Construct
The Terminal Statement
DO WHILE Construct
Example .
Branching

Program Units and Procedures.
Scope . .
The Scope of a Name
Association . ..
Host Association
Use Association
Pointer Association
Integer Pointer Assocratlon
Program Units, Procedures, and Subprograms
Internal Procedures
Interface Concepts.
Interface Blocks. ..
Example of an Interface .
Generic Interface Blocks .

Unambiguous Generic Procedure References

Extending Intrinsic Procedures with Generic
Interface Blocks.
Defined Operators.
Defined Assignment .
Main Program .
Modules .
Example of a Module
Block Data Program Unit
Example of a Block Data Program Un1t
Function and Subroutine Subprograms .
Procedure References.
Intrinsic Procedures

Conflicts Between Intrinsic Procedure Names

and Other Names .
Arguments .

Actual Argument Specrflcatlon
Argument Association

%VAL and %REF . .

Intent of Dummy Arguments .

Optional Dummy Arguments .

. 98
. 98

. 101
. 101
. 103
. 104
. 106
. 110
. 112
. 113
. 114
. 115

. 117
. 117
. 117
. 119
. 119
. 121
. 121
. 122
. 125
. 125
. 126

. 127
. 127
. 128
. 131
. 131
. 132
. 133
. 134
. 134
. 135
. 136
. 138
. 140
. 141

141

. 142
. 143
. 144
. 145
. 146
. 148
. 149
. 150
. 150
. 151
. 152

. 153
. 153
. 153
. 156
. 157
. 158
. 159

Restrictions on Optional Dummy Arguments
Not Present . .

Length of Character Arguments .

Variables as Dummy Arguments .
Allocatable Objects as Dummy Arguments
Pointers as Dummy Arguments .
Procedures as Dummy Arguments

Asterisks as Dummy Arguments .
Resolution of Procedure References .

Rules for Resolving Procedure References to

Names
Resolving Procedure References to Generlc
Names
Recursion
Pure Procedures
Examples.
Elemental Procedures.
Examples.

Understanding XL Fortran
Input/Output .

Records .

Formatted Records
Unformatted Records.
Endfile Records.

Files .
Definition of an External Flle .
File Access Methods .

Units .

Connection of a Un1t

Data Transfer Statements

Advancing and Nonadvancmg Input / Output
File Position Before and After Data Transfer .

Conditions and IOSTAT Values
End-Of-Record Conditions .
End-Of-File Conditions .
Error Conditions

Input/Output Formatting.
Format-Directed Formatting
Data Edit Descriptors.
Control Edit Descriptors.
Character String Edit Descrlptors
Editing e
Complex Edrtrng .
Data Edit Descriptors.
A (Character) Editing.
B (Binary) Editing .
E, D, and Q (Extended Precrslon) Edltlng
EN Editing . oo
ES Editing
F (Real without Exponent) Edltmg
G (General) Editing
I (Integer) Editing .
L (Logical) Editing.
O (Octal) Editing . .
Q (Character Count) Edrtmg
Z (Hexadecimal) Editing
Control Edit Descriptors.
/ (Slash) Editing

iV XL Fortran Advanced Edition for Mac OS X: Language Reference

. 159
. 160
. 160
. 162
. 163
. 163
. 164
. 164

. 165

. 166
. 166
. 167
. 169
. 169
. 171

. 173
. 173
. 173
. 173
. 173
. 174
. 174
. 174
. 176
. 176
. 178

178

. 179
. 181
. 181
. 181
. 182

. 187
. 187
. 187
. 188
. 189
. 189
. 191
. 191
. 191
. 191
. 193
. 195
. 196
. 197
. 198
. 200
. 201
. 201
. 203
. 204
. 205
. 205

: (Colon) Editing
$ (Dollar) Editing .

Apostrophe/Double Quotatlon Mark Edltmg

(Character-String Edit Descriptor)
BN (Blank Null) and BZ (Blank Zero) Edltmg
H Editing .
P (Scale Factor) Edltmg .
S, SP, and SS (Sign Control) Edltmg
T, TL, TR, and X (Positional) Editing
Interaction between Input/Output Lists and
Format Specifications .
List-Directed Formatting.
List-Directed Input
List-Directed Output .
Namelist Formatting .
Namelist Input Data .
Namelist Output Data

Statements and Attributes .
Attributes
ALLOCATABLE
ALLOCATE .
ASSIGN .
AUTOMATIC
BACKSPACE
BLOCK DATA .
BYTE .

CALL .

CASE .
CHARACTER .
CLOSE

COMMON .
COMPLEX .
CONTAINS .
CONTINUE .
CYCLE

DATA .
DEALLOCATE .
Derived Type
DIMENSION

DO. . . .

DO WHILE . .
DOUBLE COMPLEX .
DOUBLE PRECISION
ELSE .

ELSE IF .
ELSEWHERE

END

END (Construct)
END INTERFACE .
END TYPE .
ENDFILE.

ENTRY
EQUIVALENCE
EXIT

EXTERNAL .
FORALL .

FORALL (Construct)
FORMAT.
FUNCTION .

GO TO (Assigned).

. 206
. 206

. 207

207

. 208
. 209
. 209
. 210

. 211
. 212
. 212
. 213
. 215
. 215
. 220

. 223
. 226
. 226
. 227
. 229
. 230
. 232
. 233
. 234
. 237
. 238
. 240
. 245
. 247
. 250
. 254
. 255
. 255
. 256
. 260
. 261
. 262
. 263
. 265
. 266
. 269
. 273
. 273
. 274
. 276
. 277
. 279
. 280
. 281
. 283
. 285
. 287
. 288
. 289
. 292
. 293
. 298
. 301

GO TO (Computed) . .
GO TO (Unconditional) .
IF (Arithmetic) .

IF (Block).

IF (Logical) .
IMPLICIT
INQUIRE.
INTEGER
INTENT .
INTERFACE.
INTRINSIC .
LOGICAL
MODULE
MODULE PROCEDURE
NAMELIST .
NULLIFY.

OPEN .
OPTIONAL .
PARAMETER
PAUSE

POINTER (Fortran 90)
POINTER (integer)
PRINT. .o
PRIVATE .
PROGRAM .
PROTECTED
PUBLIC .

READ .

REAL .

RECORD.
RETURN .
REWIND.

SAVE . .
SELECT CASE .
SEQUENCE .
Statement Function
STATIC

STOP . .
SUBROUTINE .
TARGET .

TYPE . .
Type Declaration .
USE

VALUE

VIRTUAL
VOLATILE .
WHERE .

WRITE

General Directives

Comment and Noncomment Form Directives.

Comment Form Directives .

Noncomment Form Directives.
Directives and Optimization

Assertive Directives .

Directives for Loop Unrolhng
Detailed Directive Descriptions

ASSERT .

CNCALL.

COLLAPSE .

EJECT .

Contents

. 302
. 303
. 304
. 304
. 305
. 306
. 308
. 314
. 318
. 320
. 322
. 323
. 328
. 329
. 330
. 331
. 332
. 337
. 338
. 339
. 340
. 342
. 344
. 346
. 347
. 348
. 350
. 351
. 356
. 361
. 362
. 363
. 365
. 366
. 367
. 368
. 370
. 371
. 372
. 373
. 374
. 378
. 384
. 386
. 388
. 388
. 390
. 392

. 397
. 397
. 397
. 399
. 399
. 399
. 400
. 400
. 400
. 402
. 403
. 404

A\

INCLUDE
INDEPENDENT
#LINE.
PERMUTATION
@PROCESS .
SNAPSHOT .
SOURCEFORM.
STREAM_UNROLL
SUBSCRIPTORDER
UNROLL.
UNROLL_AND_. FUSE

Intrinsic Procedures

Classes of Intrinsic Procedures.
Inquiry Intrinsic Functions .
Elemental Intrinsic Procedures.
System Inquiry Intrinsic Functions
Transformational Intrinsic Functions.
Intrinsic Subroutines .

Data Representation Models
Integer Bit Model .
Integer Data Model
Real Data Model

Detailed Descriptions of Intrinsic Procedures

ABORT() .

ABS(A)

ACHAR(I)

ACOS(X) .

ACOSD(X)

ADJUSTL(STRING)

ADJUSTR(STRING)

AIMAG(Z), IMAG(Z).

AINT(A, KIND)

ALL(MASK, DIM).

ALLOCATED(ARRAY) or ALLOCATED(SCALAR)

ANINT(A, KIND) .

ANY(MASK, DIM)

ASIN(X) .

ASIND(X)
ASSOCIATED(POINTER, TARGET) .
ATAN(X) . S
ATAND(X) .

ATAN2(Y, X)

ATAN2D(Y, X) .

BIT_SIZE(I) .

BTEST(I, POS) .

CEILING(A, KIND)

CHAR(, KIND)

CMPLX(X, Y, KIND) .

CONJG(Z)

COS(X)

COSD(X) .

COSH(X) . .
COUNT(MASK, DIM)
CPU_TIME(TIME). .
CSHIFT(ARRAY, SHIFT, DIM) .
CVMGx(TSOURCE, FSOURCE, MASK)

DATE_AND TIME(DATE TIME, ZONE, VALUES)

DBLE(A) .
DCMPLX(X, Y).
DIGITS(X)

. 404
. 406
. 409
. 411
. 412
. 412
. 413
. 414
. 415
. 417
. 419

. 421
. 421
. 421
. 421
. 422
. 422
. 423
. 423
. 423
. 424
. 425
. 425
. 426
. 426
. 427
. 427
. 428
. 429
. 429
. 430
. 430

. 431
432

. 432
. 433
. 434
. 434
. 435
. 436
. 436
. 437
. 438
. 439
. 440
. 440
. 441
. 442
. 443
. 443
. 444
. 445
. 445
. 446
. 448
. 449

450

. 451
. 452
. 453

DIM(X, Y)
DOT_PRODUCT(VECTOR_A, VECTOR_B)
DPROD(X, Y)

EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM)
EPSILON(X). o
ERF(X)

ERFC(X) .

EXP(X)

EXPONENT(X)..

FLOOR(A, KIND) .

FRACTION(X) .

GAMMA(X) . .
GETENV(NAME, VALUE) .

HFIX(A) .

HUGE(X).

TACHAR(C) .

IAND(,])

IBCLR(I, POS) .

IBITS(I, POS, LEN)

IBSET(I, POS)

ICHAR(C)

IEOR(, J).

ILEN(])

IMAG(Z) .

INDEX(STRING, SUBSTRING, BACK) .
INT(A, KIND) . S
INT2(A) .

IOR(, J) .

ISHFT(I, SHIFT)

ISHFTC(I, SHIFT, SIZE) .

KIND(X) . . .

LBOUND(ARRAY, DIM).

LEADZ(I)

LEN(STRING) .
LEN_TRIM(STRING) .

LGAMMA(X) o
LGE(STRING_A, STRING_B) .
LGT(STRING_A, STRING_B) .
LLE(STRING_A, STRING_B)
LLT(STRING_A, STRING B)

LOC(X) .

LOG(X)

LOG10(X) .

LOGICAL(L, KIND) .

LSHIFT(I, SHIFT) .
MATMUL(MATRIX_A, MATRIX_B, MINDIM)
MAX(A1, A2, A3, ...) . S
MAXEXPONENT(X) . o
MAXLOC(ARRAY, DIM, MASK) or
MAXLOC(ARRAY, MASK) .
MAXVAL(ARRAY, DIM, MASK) or
MAXVAL(ARRAY, MASK) .
MERGE(TSOURCE, FSOURCE, MASK).
MIN(A1, A2, A3, ..) . o
MINEXPONENT(X) . Lo
MINLOC(ARRAY, DIM, MASK) or
MINLOC(ARRAY, MASK) .
MINVAL(ARRAY, DIM, MASK) or
MINVAL(ARRAY, MASK) .

MOD(A, P) .

MODULO(A, P)

Vi XL Fortran Advanced Edition for Mac OS X: Language Reference

. 454
. 454
. 455
. 456
. 457
. 458
. 459
. 459
. 460
. 461
. 462
. 462
. 463
. 464
. 464
. 465
. 466
. 466
. 467
. 468
. 468
. 469
. 470
. 470
. 470
. 471
. 472
. 473
. 474
. 475
. 475
. 476
. 477
. 477
. 478
. 478
. 479
. 480
. 480
. 481
. 482
. 482
. 483
. 484
. 484
. 485
. 486
. 487

. 488

. 490
. 491
. 492
. 492

. 493
. 495

. 496
. 497

MVBITS(FROM, FROMPOS, LEN, TO, TOPOS) . . 497
NEAREST(X,S)498
NINT(A, KIND) . 499
NOT(I) . 499
NULL(MOLD) . : . 500
NUMBER_OF_PROCESSORS(DIM) . . 501
PACK(ARRAY, MASK, VECTOR). . 502
PRECISION(X) . o . 503
PRESENT(A) . . 504
PROCESSORS_SHAPE() . . 504
PRODUCT(ARRAY, DIM, MASK) or
PRODUCT(ARRAY, MASK) . 505
QCMPLX(X, Y). : . 507
QEXT(A) . . 507
RADIX(X) . 508
RAND() . : . 508
RANDOM_NUMBER(HARVEST) . 509
RANDOM_SEED(SIZE, PUT, GET, GENERATOR) 509
RANGE(X) . . 11
REAL(A, KIND) : . 512
REPEAT(STRING, NCOPIES)513
RESHAPE(SOURCE, SHAPE, PAD, ORDER) . . .513
RRSPACING(X) S . 514
RSHIFT(I, SHIFT) . . 515
SCALE(X,I) . . . 515
SCAN(STRING, SET, BACK) . 516
SELECTED_INT_KIND(R) . . 517
SELECTED_REAL_KIND(P, R) . 517
SET_EXPONENT(X,). . 518
SHAPE(SOURCE) . . 519
SIGN(A, B) 520
SIGNAL(I, PROC) . . 521
SIN(X). . 521
SIND(X) . . 522
SINH(X) 523
SIZE(ARRAY, DIM) . 523
SIZEOF(A) . 524
SPACING(X) . 526
SPREAD(SOURCE, DIM, NCOPIES). . 526
SQRT(X) . o . 527
SRAND(SEED) . : .. .528
SUM(ARRAY, DIM, MASK) or SUM(ARRAY

MASK) . S . 529
SYSTEM(CMD, RESULT) . 530
SYSTEM_CLOCK(COUNT, COUNT._RATE,
COUNT_MAX). S . 531
TAN(X) . 532
TAND(X). . 532
TANH(X). . 533
TINY(X) . : . 534
TRANSFER(SOURCE, MOLD, SIZE). . 534
TRANSPOSE(MATRIX) . . . 535
TRIM(STRING). . 536
UBOUND(ARRAY, DIM) . . 536
UNPACK(VECTOR, MASK, FIELD) . . 537
VERIFY(STRING, SET, BACK). . 538
XL Fortran Language Utilities . . 541

Floating-Point Control and Inquiry

Procedures 543

fpgets fpsets.b543

Efficient Floating-Point Control and Inqulry

Procedures54
xIf_fp_util Floatmg—Pomt Proceduresb545

IEEE Modules and Support.b548
Compiling and Exception Handhng .o . 549
General Rules for Implementing IEEE Modules 549
IEEE Derived Data Types and Constants . . . 549
IEEE Operators.b551
IEEE PROCEDURES551
Rules for Floating-Point Status 567
Examples.Db68

Hardware Directives and Intrinsic

Procedures573
Hardware-Specific Dlrectlves B V)
CACHE_ZERO.573
ISy§neC. o000 o000 573
LIGHTSYNCb574
PREFETCHb574
Hardware-Specific Intrmsrc Procedures. 4
FCTIW(X)577
FCTIWZ(X)577
FMADDA, X, Y)577
FMSUB(A, X, Y)578
FNABS(X)578
FNMADDA, X, Y)578
FNMSUB(A, X, Y).579
FRES(X)57
FRSQRTE(X).580
FSELX,Y,Z)580
MTFSFMMASK, R).580
MTFSFIBED)580
MULHY(RA,RB) 581
ROTATELI(RS, IS, SHIFT, MASK) 581
ROTATELM(RS, SHIFT, MASK)581
SETFSBOBT)58
SETFSB1(BT)58
SFTIM,Y)58
TRAP(A,B, TO)58
Service and Utility Procedures 583
General Service and Utility Procedures. 583
List of Service and Utility Procedures 584
alarm_.58
bic.58
bis_58
bit..58
cock_.58
ctime_.bh86
date58
dtime_586
etime_.58
exit.58
fdate_587
fiosetup_.58
flush_.58
ftell_58

Contents Vil

getarg .
getewd_ .
getfd .
getgid_
getlog
getpid_
getuid_

global_timef .

gmtime_ .
hostnm_ .
iargc
idate_ .
ierrno_
irand .
irtc .
itime_ .
jdate
lenchr_
Inblnk_
Itime_ .
mclock
gsort_ .

gsort_down .

qsort_up .
rtc .
setrteopts.

. 589
. 590
. 590
. 590
. 591
. 591
. 591
. 591
. 592
. 592
. 593
. 593
. 593
. 594
. 594
. 594
. 595
. 595
. 595
. 596
. 596
. 597
. 597
. 597
. 598
. 598

sleep_ .
time_ .
timef . .
timef_delta .
umask_
usleep_
xl__trbk .

Appendix A. Compatibility Across
Standards .

Fortran 90 compatibility .
Obsolescent Features .
Deleted Features

Appendix B. ASCIl and EBCDIC
Character Sets.

Notices . ..
Trademarks and Service Marks

Glossary

INDEX

viili XL Fortran Advanced Edition for Mac OS X: Language Reference

. 598
. 599
. 599
. 599
. 600
. 600
. 601

. 603
. 604
. 604
. 606

. 607

. 615
. 617

. 619

. 627

The XL Fortran Language

This section details the primary concepts and fundamentals of XL Fortran.
Beginning with an fintroduction to the language| that describes the Version 8.1
compiler and the standards it supports, this section then explains the following
language concepts:

Language Fundamentals|

Data T

pes and Objects|

Arrays

Expressions and Assignment|

Control Structures

Program units and Procedures|

Input/Output Concepts|

[[nput/Output Formatting]

In addition to explaining the integral elements of the XL Fortran language, this
part includes sections on the following:

* [Statements and Attributes|

* |General Directives|

+ |Intrinsic Procedures|

The following parts explain more specific aspects of the XL Fortran language:

* [XL Fortran Language Utilities|

© Copyright IBM Corp. 1990, 2003

2 XL Fortran Advanced Edition for Mac OS X: Language Reference

XL Fortran for Mac OS X

The Language Reference is part of a documentation suite that offers information on
installing and using the XL Fortran compiler on Mac OS X. In addition to the
Language Reference, this suite also includes:

* The Installation Guide for information on installing the XL Fortran compiler.

* The|XL Fortran for Mac OS X User’s Guidd for information on tasks like setting
up the compiler, specifying compiler options, and porting a program to XL
Fortran.

Fortran (FORmula TRANSslation) is a high-level programming language primarily
useful for engineering, mathematical, and scientific applications involving numeric
computations. This document is a source for users who already have experience
programming applications in Fortran. Users new to Fortran can still use this
document to find information on the language and features unique to XL Fortran,
though this reference is not a programming tutorial.

This document defines the syntax, semantics, and restrictions you must follow to
write valid XL Fortran programs. The compiler detects most nonconformities to the
XL Fortran language rules, but may not detect some syntactic and semantic
combinations. The compiler can not detect all combinations for performance
reasons, or because the nonconformance is only detectable at run time. XL Fortran
programs that contain these undiagnosed combinations are not valid, whether or
not the programs run as expected.

This section contains information on:

* |Supported Language Standards in XL Fortran|

+ |How to Read XL Fortran Syntax Diagrams|

* [Typographical Conventions|

+ |Using Examples|

The following sections provide details on language features and implementations:
* XL Fortran language elements:

— [Fundamentals of the XL Fortran Language|
[Data Types and Objects|

— [Expressions and Assignment|

— |Control Structures

— [Program units and Procedures|

— [Understanding XL Fortran Input/Output|

— [Input/Output Formatting

— [Statements and Attributeg|

— |General Directives

— [Intrinsic Procedures|

* Procedures that provide additional functionality to a user familiar with the
Fortran Language:

— [Floating-point Control and Inquiry Procedures

- [Hardware Directives and Intrinsic Procedures

© Copyright IBM Corp. 1990, 2003 3

— [Service and Utility Procedures|

Language Standards

Fortran 95

The Fortran 95 language standard is upward-compatible with the FORTRAN 77
and Fortran 90 language standards, excluding (deleted features| Some of the
improvements provided by the Fortran 95 standard are:

o ‘Default initializationl
- [ELEMENTAL] functions.

* The[FORALI construct statement.
. I’Oﬂ"@ initialization.

« [PURE|functions.

* |Specification functions,

The Fortran standard committees respond to questions of interpretation about
aspects of Fortran. Some questions can relate to language features already
implemented in the XL Fortran compiler. Any answers given by these committees
relating to these language features can result in changes to future releases of the
XL Fortran compiler, even if these changes result in incompatibilities with previous
releases of the product.

Fortran 90

Fortran 90 offers many new features and feature enhancements to FORTRAN 77.
The following topics outline some of the key features that Fortran 90 brings to the
FORTRAN 77 language:

* |Array enhancements|

+ |Control construct enhancements}

* [Derived typeg

* |[Dynamic behavior]

* |Free source form|

.

* |Parameterized data typed

* |Procedure enhancements|

.
Fortran 2003 Draft Standard

Segments of this document may contain information based on the Fortran 2003
Draft Standard. The standard is open to continual interpretation, modification and
revision. IBM reserves the right to modify the behavior of any features of this
product to conform with future interpretations of this standard.

Other Standards and Standards Documents

Standards Documents
XL Fortran is designed according to the following standards. You can refer to these

standards for precise definitions of some of the features found in this document.
* American National Standard Programming Language FORTRAN, ANSI X3.9-1978.

4 XL Fortran Advanced Edition for Mac OS X: Language Reference

American National Standard Programming Language Fortran 90, ANSI X3.198-1992.
(This document uses its informal name, Fortran 90.)

ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991 (E).
Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:1997. (This document uses its informal name, Fortran 95.)

Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753
(United States of America, Department of Defense standard). Note that XL
Fortran supports only those extensions documented in this standard that have
also been subsequently incorporated into the Fortran 90 standard.

Typographical Conventions

This document uses the following methods to differentiate text:

Fortran keywords, commands, statements, directives, intrinsic procedures,
compiler options, and filenames are shown in bold. For example, COMMON,
END, and OPEN.

References to other sources of information appear in italics.

Variable names and user-specified names appear in lowercase italics. For
example, array_element_name.

Fortran 95 |

Large blocks of text delineating Fortran 95 specific information are enclosed by

marked brackets, while brief Fortran 95 extensions are separated

using icons.

End of Fortran 95 |

The IBM Extension delineation is used in the following instances:

IBM Extension

For extensions to the Fortran 90 and Fortran 95 standards, where an extension is
any processor dependent value or behavior.

To mark implementations of the Fortran 2003 Draft Standard.
Brief IBM extensions are separated using icons.

End of IBM Extension |

Numbered notes are used in syntax diagrams to denote IBM and Fortran 95
extensions. See the [sample syntax diagram|in this section for an example.

How to Read Syntax Diagrams

Throughout this document, diagrams illustrate XL Fortran syntax. This section will
help you to interpret and use those diagrams.

If a variable or user-specified name ends in _list, you can provide a list of these
terms separated by commas.

You must enter punctuation marks, parentheses, arithmetic operators, and other
special characters as part of the syntax.

XL Fortran for Mac OS X 5

* Read syntax diagrams from left to right and from top to bottom, following the
path of the line:

— The »—— symbol indicates the beginning of a statement.

— The — symbol indicates that the statement syntax continues on the next
line.

— The »— symbol indicates that a statement continues from the previous line.
— The —><symbol indicates the end of a statement.

— Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

— IBM and Fortran 95 extensions are marked by a number in the syntax
diagram with an explanatory note immediately following the diagram.

* Required items appear on the horizontal line (the main path):

»>—keyword—required_argument ><

* Optional items appear below the main path:

»>—keyword ><
|—opt ional_argumen 1,‘J

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and]). For example, [UNIT=]u

 If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path:

Y
A

»—keywor‘d—Erequired_argument
required_argumen t—l

If choosing one of the items is optional, the entire stack appears below the main
path:

A\
A

»»—keyword
i:gpt ional_argumen t:‘

ptional_argument

* An arrow returning to the left above the main line (a repeat arrow) indicates
that you can repeat an item, and the separator character if it is other than a
blank:

6 XL Fortran Advanced Edition for Mac OS X: Language Reference

v

»»—keyword repeatable_argument > <

A repeat arrow above a stack indicates that you can make more than one choice
from the items in the stack.

v

»—keyword—[requ ired_argument
required_argumen t—l

A\
A

Sample Syntax Diagram

The following is an example of a syntax diagram with an interpretation:

»>—EXAMPLE

Notes:
1 IBM Extension

H

char_constant |_G_| Y e——name_list
]
d

(1)

Interpret the diagram as follows:

Enter the keyword EXAMPLE.
EXAMPLE is an IBM extension.

Enter a value for char_constant.

Enter a value for a or b, but not for both.
Optionally, enter a value for ¢ or d.

Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

Enter the value of at least one name for name_list. If you enter more than one
value, you must put a comma between each. (The _list syntax is equivalent to
the previous syntax for e.)

Using Examples

The examples in this document, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a desired result.

The examples in this document are compiled using one of these invocation
commands: £77, fort77, x1f, x1f_r, x1f90, x1f90_r, x1f95, x1f95_r. See
[Fortran Programs|in the for details.

The text explaining an example contains information on any additional options
you must specify to compile that example.

XL Fortran for Mac OS X 7

* You can paste the sample code from this document into an edit session. Most of
the examples will compile with little or no change.

8 XL Fortran Advanced Edition for Mac OS X: Language Reference

Fundamentals of the XL Fortran Language

This section describes the fundamentals of an XL Fortran program:

. ”Characters”l

+ |“Names” on page 10|

+ [“Statements” on page 11|

* |“Lines and Source Formats” on page 11|

* [“Order of Statements and Execution Sequence” on page 19

Characters
The XL Fortran character set consists of letters, digits, and special characters:
Letters Digits | Special Characters
AN *a n 0 Blank
B 0 b o 1 = Equal sign
cC P c p 2 + Plus sign
D Q d q 3 - Minus sign
E R e r 4 * Asterisk
F S f s 5 / Slash
G T g t 6 (Left parenthesis
H U h u 7) Right parenthesis
I v i v 8 . Comma
J W j o ow 9 . Decimal point / period
K X k x $ Currency symbol
L Y 1 vy ' Apostrophe
M Z m z* : Colon
I Exclamation point
" Double quotation mark
% Percent sign
& Ampersand
5 Semicolon
? Question mark
< Less than
> Greater than
_ Underscore

| IBM Extension

Note: * Lower case letters are used in XL Fortran

| End of IBM Extension

The characters have an order known as a collating sequence, which is the
arrangement of characters that determines their sequence order for such processes
as sorting, merging, comparing. XL Fortran uses American National Standard Code
for Information Interchange (ASCII) to determine the ordinal sequence of
characters. (See|Appendix B, “ASCII and EBCDIC Character Sets,” on page 607] for
a complete listing of the ASCII character set.)

White space refers to blanks and tabs. The significance of white space depends on
the source format used. See [‘Lines and Source Formats” on page 11| for details.

© Copyright IBM Corp. 1990, 2003 9

A lexical token is a sequence of characters with an indivisible interpretation that
forms a building block of a program. It can be a keyword, name, literal constant
(not of type complex), operator, label, delimiter, comma, equal sign, colon,
semicolon, percent sign, ::, or =>.

Names

A name is a sequence of any or all of the following elements:
* Letters (A-Z, a-z)

* Digits (0-9)

* Underscores (_)

. Dollar signs ($)

The first character of a name must not be a digit.

In Fortran 90 and Fortran 95, the maximum length of a name is 31 characters.

| IBM Extension

In XL Fortran, the maximum length of a name is 250 characters. Although XL
Fortran allows a name to start with an underscore, you may want to avoid using
one in that position because the Mac OS X operating system, and the XL Fortran
compiler and libraries have reserved names that begin with underscores.

All letters in a source program are translated into lowercase unless they are in a
character context. The character contexts are characters within character literal
constants, character-string edit descriptors, and Hollerith constants.

Note: If you specify the -qmixed compiler option, names are not translated to
lowercase. For example, XL Fortran treats

ia Ia iA IA

the same by default, but treats them as distinct identifiers if you specify the
-qmixed compiler option.

| End of IBM Extension

A name can identify entities such as:
* A variable

* A constant

* A procedure

e A derived type

* A construct

* A program unit

* A common block

* A namelist group

A subobject designator is a name followed by one or more selectors (array element
selectors, array section selectors, component selectors, and substring selectors). It
identifies the following items in a program unit:

* An array element (see [“Array Elements” on page 74)

* An array section (see [“Array Sections” on page 75)

10 XL Fortran Advanced Edition for Mac OS X: Language Reference

* A structure component (see|”Structure Components” on page 39)

* A character substring (see [“Character Substrings” on page 31)

Statements

A Fortran statement is a sequence of lexical tokens. Statements are used to form
program units.

| IBM Extension

The maximum length of a statement in XL Fortran is 6700 characters.

| End of IBM Extension

See [Statments and Attributeq for details on statements supported by XL Fortran.

See [“Statements and Attributes” on page 223|for more information on statements
supported by XL Fortran.

Statement Keywords

A statement keyword is part of the syntax of a statement, and appears in
uppercase bold everywhere but in syntax diagrams and tables. For example, the
term DATA in the DATA statement is a statement keyword.

No sequence of characters is reserved in all contexts. A statement keyword is
interpreted as an entity name if the keyword is used in such a context.

Statement Labels

A statement label is a sequence of one to five digits, one of which must be
nonzero, that you can use to identify statements in a Fortran scoping unit. In fixed
source form, a statement label can appear anywhere in columns 1 through 5 of the
initial line of the statement. In free source form, such column restrictions do not

apply.

| IBM Extension |

XL Fortran ignores all characters that appear in columns 1 through 5 on fixed
source form continuation lines.

| End of IBM Extension |

Giving the same label to more than one statement in a scoping unit will cause
ambiguity, and the compiler will generate an error. White space and leading zeros
are not significant in distinguishing between statement labels. You can label any
statement, but statement labels can only refer to executable statements and
FORMAT statements. The statement making the reference and the statement it
references (identified by the statement label) must be in the same scoping unit in
order for the reference to resolve. (See|“Scope” on page 127| for details).

Lines and Source Formats

A line is a horizontal arrangement of characters. By contrast, a column is a vertical
arrangement of characters, where each character, or each byte of a multibyte
character, in a given column shares the same line position.

Fundamentals of the XL Fortran Language 11

| IBM Extension |

Because XL Fortran measures lines in bytes, these definitions apply only to lines
containing single-byte characters. Each byte of a multibyte character occupies one
column.

| End of IBM Extension |

The kinds of lines are:

Initial Line Is the first line of a statement.

Continuation Continues a statement beyond its initial line.

Line

Comment Line Does not affect the executable program and can be used for

documentation. The comment text continues to the end of a line.
Although comment lines can follow one another, a comment line cannot
be continued. A line of all white space or a zero-length line is a
comment line without any text. Comment text can contain any
characters allowed in a character context.

If an initial line or continuation line is not continued, or if it is continued
but not in a character context, an inline comment can be placed on the
same line, to the right of any statement label, statement text, and
continuation character that may be present. An exclamation mark (!)
begins an inline comment.

* Conditional Indicates that the line should only be compiled if recognition of
Compilation Line | conditional compilation lines is enabled. A conditional compilation
sentinel should appear on a conditional compilation line. (See
[“Conditional Compilation” on page 17) *

* Debug Line Indicates that the line is for debugging code (for fixed source form only).
In XL Fortran the letter D or X must be specified in column 1. (See
['Debug Lines” on page 14) *

* Directive Line | Provides instructions or information to the compiler in XL Fortran (see
[“Comment Form Directives” on page 397). *

| IBM Extension |
Note: * Debug Line and Directive Line are used in XL Fortran

In XL Fortran, source lines can be in fixed source form or free source form format.
Use the |SOURCEFORM| directive to mix source formats within the same program
unit. Fixed source form is the default when using the 77, fort77, x1f, or x1f_r
invocation commands. Fortran 90 free source form is the default when using the
x1£90, x1f90_r, x1f95, or x1f95_r invocation commands.

See [Compiling XL Fortran Programs|in the for details on invocation
commands.

| End of IBM Extension

Fixed Source Form

| IBM Extension

A fixed source form line is a sequence of 1 to 132 characters. The default line size

12 XL Fortran Advanced Edition for Mac OS X: Language Reference

(as stipulated in Fortran 95) is 72 characters, but can be changed in XL Fortran by
using the pqfixed=right_margin compiler option (see the |[User’s Guide).

| End of IBM Extension |

Columns beyond the right margin are not part of the line and can be used for
identification, sequencing, or any other purpose.

Except within a character context, white space is insignificant; that is, you can
imbed white space between and within lexical tokens, without affecting the way
the compiler will treat them.

| IBM Extension |

Tab formatting means there is a tab character in columns 1 through 6 of an initial
line in XL Fortran, which directs the compiler to interpret the next character as
being in column 7.

| End of IBM Extension |

Requirements for lines and for items on those lines are:

* A comment line begins with a C, ¢, or an asterisk (*) in column 1, or is all white
space. Comments can also follow an exclamation mark (!), except when the
exclamation mark is in column 6 or in a character context.

¢ For an initial line without tab formatting:

— Columns 1 through 5 contain either blanks, a statement label, a D or an X in
column 1 optionally followed by a statement label.

— Column 6 contains a blank or zero.

— Columns 7 through to the right margin contain statement text, possibly
followed by other statements or by an inline comment.

| IBM Extension |

 For an initial line with tab formatting in XL Fortran:

— Columns 1 through 6 begin with either blanks, a statement label, a D or an X
in column 1, optionally followed by a statement label. This must be followed
by a tab character.

- If the -qxflag=oldtab compiler option is specified, all columns from the
column immediately following the tab character through to the right margin
contain statement text, possibly followed by other statements and by an inline
comment.

— If the -qxflag=oldtab compiler option is not specified, all columns from
column 7 (which corresponds to the character after the tab) to the right
margin contain statement text, possibly followed by other statements and by
an inline comment.

| End of IBM Extension |

e For a continuation line:

— Column 1 must not contain C, ¢, or an asterisk. Columns 1 through 5 must
not contain an exclamation mark as the leftmost nonblank character.

Fundamentals of the XL Fortran Language 13

| IBM Extension

Column 1 can contain a D (signifying a debug line) in XL Fortran. Otherwise,
these columns can contain any characters allowed in a character context; these
characters are ignored.

| End of IBM Extension |

— Column 6 must have either a nonzero character or a nonwhite space
character. The character in column 6 is referred to as the continuation
character. Exclamation marks and semicolons are valid continuation
characters.

— Columns 7 through to the right margin contain continued statement text,
possibly followed by other statements and an inline comment.

— Neither the END statement nor a statement whose initial line appears to be a
program unit END statement can be continued.

| IBM Extension |

— In XL Fortran there is no limit to the number of continuation lines for a
statement, but a statement cannot be longer than 6700 characters. The Fortran
standards limit the number of continuation lines to 19.

| End of IBM Extension |

A semicolon (;) separates statements on a single source line, except when it appears
in a character context, in a comment, or in columns 1 through 6. Two or more
semicolon separators that are on the same line and are themselves separated by
only white space or other semicolons are considered to be a single separator. A
separator that is the last character on a line or before an inline comment is ignored.
Statements following a semicolon on the same line cannot be labeled. Additional
statements cannot follow a program unit END statement on the same line.

Debug Lines

| IBM Extension |

A debug line, allowed only for fixed source form, contains source code used for
debugging and is specified in XL Fortran by the letter D, or the letter X in column
1. The handling of debug lines depends on the -qdlines or the -qxlines compiler
options:

* If you specify the -qdlines option, the compiler interprets the D in column 1 as a
blank, and handles such lines as lines of source code. If you specify -qxlines ,
the compiler interprets the X in column 1 as a blank and treats these lines as
source code.

* If you do not specify -qdlines or -qxlines, the compiler handles such lines as
comment lines. This is the default setting.

If you continue a debugging statement on more than one line, every continuation
line must have a continuation character as well as a D or an X in column 1. If the
initial line is not a debugging line, you can designate any continuation lines as
debug lines provided that the statement is syntactically correct, whether or not you
specify the -qdlines or -qxlines compiler option.

| End of IBM Extension |

14 XL Fortran Advanced Edition for Mac OS X: Language Reference

Example of Fixed Source Form:

C Column Numbers:
C 1 2 3 4 5 6 7
C23456789012345678901234567890123456789012345678901234567890123456789012

I'IBM* SOURCEFORM (FIXED)
CHARACTER CHARSTR ; LOGICAL X 1 2 statements on 1 Tine
DO 10 I=1,10
PRINT *,'this is the index',I ! with an inTine comment
10 CONTINUE
C

CHARSTR="THIS IS A CONTINUED
X CHARACTER STRING"
I There will be 38 blanks in the string between "CONTINUED"
I and "CHARACTER". You cannot have an inline comment on
I the initial Tine because it would be interpreted as part
I of CHARSTR (character context).
100 PRINT =, IERROR
I The following debug Tines are compiled as source Tines if
! you use -qdlines
D IF (I.EQ.IDEBUG.AND.
+ J.EQ.IDEBUG) WRITE(6,*) IERROR
IF (I.EQ.
+ IDEBUG)
+ WRITE(6,*) INFO
END

D
D
D
D

Free Source Form

A free source form line can specify up to 132 characters on each line, with a
maximum of 39 continuation lines for a statement.

| IBM Extension

XL Fortran allows any line length and number of continuation lines, so long as the
number of characters does not exceed 6700.

| End of IBM Extension

Items can begin in any column of a line, subject to the following requirements for
lines and items on those lines:

* A comment line is a line of white space or begins with an exclamation mark (!)
that is not in a character context.

* An initial line can contain any of the following items, in the following sequence:
— A statement label.
— Statement text. Note that statement text is required in an initial line.
— Additional statements.
— The ampersand continuation character (&).
— An inline comment.

 If you want to continue an initial line or continuation line in a non-character
context, the continuation line must start on the first noncomment line that
follows the intial line or continuation line. To define a line as a continuation line,
you must place an ampersand after the statements on the previous
non-comment line.

* White space before and after the ampersand is optional, with the following
restrictions:

Fundamentals of the XL Fortran Language 15

— If you also place an ampersand in the first nonblank character position of the
continuation line, the statement continues at the next character position
following the ampersand.

— If a lexical token is continued, the ampersand must immediately follow the
initial part of the token, and the remainder of the token must immediately
start after the ampersand on the continuation line.

* A character context can be continued if the following conditions are true:

— The last character of the continued line is an ampersand and is not followed
by an inline comment. If the rightmost character of the statement text to be
continued is an ampersand, a second ampersand must be entered as a
continuation character.

— The first nonblank character of the next noncomment line is an ampersand.

A semicolon separates statements on a single source line, except when it appears in
a character context or in a comment. Two or more separators that are on the same
line and are themselves separated by only white space or other semicolons are
considered to be a single separator. A separator that is the last character on a line
or before an inline comment is ignored. Additional statements cannot follow a
program unit END statement on the same line.

White Space

White space must not appear within lexical tokens, except in a character context or
in a format specification. White space can be inserted freely between tokens to
improve readability, although it must separate names, constants, and labels from
adjacent keywords, names, constants, and labels.

Certain adjacent keywords may require white space. The following table lists
keywords that require white space, and keywords for which white space is
optional.

Table 1. Keywords Where White Space is Optional

BLOCK DATA END FUNCTION END SUBROUTINE
DOUBLE COMPLEX END IF END TYPE
DOUBLE PRECISION END INTERFACE END UNION

ELSE IF END MAP END WHERE

END BLOCK DATA END MODULE GO TO

END DO END PROGRAM IN OUT

END FILE END SELECT SELECT CASE
END FORALL END STRUCTURE

See |"Type Declaration” on page 378 for details about fype_spec.

Example of Free Source Form:

11BM* SOURCEFORM (FREE(F90))

I Column Numbers:
! 1 2

3 4

6 7

123456789012345678901234567890123456789012345678901234567890123456789012

DO I=1,20

PRINT *,'this statement&

& is continued' ; IF (I.LT.5) PRINT =, I

16 XL Fortran Advanced Edition for Mac OS X: Language Reference

ENDDO
EN&
&D I A lexical token can be continued

IBM Free Source Form

| IBM Extension

An IBM free source form line or statement is a sequence of up to 6700 characters.
Items can begin in any column of a line, subject to the following requirements for
lines and items on those lines:

* A comment line begins with a double quotation mark (") in column 1, is a line
of all white space, or is a zero-length line. A comment line must not follow a
continued line. Comments can also follow an exclamation mark (!), except in a
character context.

* An initial line can contain any of the following items, in the following sequence:
— A statement label
— Statement text
— The minus sign continuation character (-)
— An inline comment

* A continuation line immediately follows a continued line and can contain any of
the following items, in the following sequence:
— Statement text
— A continuation character (-)
— An inline comment

If statement text on an initial line or continuation line is to be continued, a minus
sign indicates continuation of the statement text on the next line. In a character
context, if the rightmost character of the statement text to be continued is a minus
sign, a second minus sign must be entered as a continuation character.

Except within a character context, white space is insignificant; that is, you can
imbed white space between and within lexical tokens, without affecting the way
the compiler will treat them.

Example of IBM Free Source Form
I1BM* SOURCEFORM (FREE(IBM))

" Column Numbers:

! 1 2 3 4 5 6 7
"23456789012345678901234567890123456789012345678901234567890123456789012
DO I=1,10

PRINT =*,'this is -
the index',I I There will be 14 blanks in the string
I between "is" and "the"
END DO
END

| End of IBM Extension

Conditional Compilation

| IBM Extension

You can use sentinels to mark specific lines of an XL Fortran program for
conditional compilation.

Fundamentals of the XL Fortran Language 17

IBM Extension

The syntax for conditional compilation lines is as follows:

A\
A

»>—cond_comp_sentinel—fortran_source_line

cond_comp_sentinel
is a conditional compilation sentinel that is defined by the current source
form and is either:
* 1$ C$, ¢$, or *$, for fixed source form; or
* 1$, for free source form

fortran_source_line
is an XL Fortran source line

The syntax rules for conditional compilation lines are very similar to the syntax
rules for fixed source form and free source form lines. The rules are as follows:

* General Rules:
A valid XL Fortran source line must follow the conditional compilation sentinel.

A conditional compilation line may contain the INCLUDE or EJECT
noncomment directives.

A conditional compilation sentinel must not contain embedded white space.

A conditional compilation sentinel must not follow a source statement or
directive on the same line.

If you are continuing a conditional compilation line, the conditional compilation
sentinel must appear on at least one of the continuation lines or on the initial
line.

You must specify the -qcclines compiler option for conditional compilation lines
to be recognized. To disable recognition of conditional compilation lines, specify
the -qnocclines compiler option.

Trigger directives take precedence over conditional compilation sentinels. For
example, if you specify the -qdirective="$" option, then lines that start with the
trigger, such as !$, will be treated as comment directives, rather than conditional
compilation lines.

* Fixed Source Form Rules:
Conditional compilation sentinels must start in column 1.
All of the rules for fixed source form line length, case sensitivity, white space,
continuation, tab formatting, and columns apply. See [“Fixed Source Form” on|
for information. Note that when recognition of conditional compilation
lines is enabled, the conditional compilation sentinel is replaced by two white
spaces.

* Free Source Form Rules:
Conditional compilation sentinels may start in any column.
All of the rules for free source form line length, case sensitivity, white space, and
continuation apply. See [“Free Source Form” on page 15 for information. Note
that when recognition of conditional compilation lines is enabled, the conditional
compilation sentinel is replaced by two white spaces.

| End of IBM Extension |

18 XL Fortran Advanced Edition for Mac OS X: Language Reference

Order of Statements and Execution Sequence

Table 2. Statement Order
[l PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA Statement
H USE Statements

DATA, FORMAT, and ENTRY | [Derived-Type Definitions, Interface Blocks, Type
Statements Declaration Statements, Specification Statements,
IMPLICIT Statements, and PARAMETER Statements

B Executable constructs

[CONTAINS Statement

Internal Subprograms or Module Subprograms
B END Statement
Statement Order

Vertical lines delineate varieties of statements that can be interspersed, while horizontal
lines delineate varieties of statements that cannot be interspersed. The numbers in the
diagram reappear later in the document to identify groups of statements that are allowed
in particular contexts. A reference back to this section is included in the places where these
numbers are used in the rest of this document.

Refer to|“Program Units and Procedures” on page 127|or [‘Statements and|
[Attributes” on page 223[for more details on rules and restrictions concerning
statement order.

Normal execution sequence is the processing of references to specification functions
in any order, followed by the processing of executable statements in the order they
appear in a scoping unit.

A transfer of control is an alteration of the normal execution sequence. Some
statements that you can use to control the execution sequence are:

¢ Control statements
* Input/output statements that contain an END=, ERR=, or EOR= specifier

When you reference a procedure that is defined by a subprogram, the execution of
the program continues with any specification functions referenced in the scoping
unit of the subprogram that defines the procedure. The program resumes with the
first executable statement following the FUNCTION, SUBROUTINE or ENTRY
statement that defines the procedure. When you return from the subprogram,
execution of the program continues from the point at which the procedure was
referenced or to a statement referenced by an alternate return specifier.

In this document, any description of the sequence of events in a specific transfer of

control assumes that no event, such as the occurrence of an error or the execution
of a STOP statement, changes that normal sequence.

Fundamentals of the XL Fortran Language 19

20 XL Fortran Advanced Edition for Mac OS X: Language Reference

Data Types and Data Objects

This section describes:

* |"Data TiEes’l
* |“Data Objects”l

* |“Intrinsic Types” on page 22

* |"Derived Types” on page 33
. B][Typeless Literal Constants” on page 5[&m 4
* |"How Type Is Determined” on page 57

« |“Definition Status of Variables” on page 57|

* [“Allocation Status” on page 61

+ |“Storage Classes for Variables” on page 62|

Data Types

A data type has a name, a set of valid values, a means to denote such values
(constants), and a set of operations to manipulate the values. There are two
categories of data types: intrinsic types and derived types.

The intrinsic types, including their operations, are predefined and are always
accessible. There are two classes of intrinsic data types:

* Numeric (also known as Arithmetic): integer, real, complex, and byte
¢ Nonnumeric: character, logical, and byte

A derived type is a user-defined data type. The components of a derived type can
be a mixture of both intrinsic and derived data types.

Type Parameters and Specifiers

XL Fortran provides one or more representation methods for each of the intrinsic
data types. Each method can be specified by a value called a kind type parameter,
which indicates the decimal exponent range for the integer type, the decimal
precision and exponent range for the real and complex types, and the
representation methods for the character and logical types. Each intrinsic type
supports a specific set of kind type parameters. kind_param is either a digit_string or
scalar_int_constant_name.

The length type parameter specifies the number of characters for entities of type
character.

A type specifier specifies the type of all entities declared in a type declaration
statement. Some type specifiers INTEGER, REAL, COMPLEX, LOGICAL, and
CHARACTER) can include a kind_selector, which specifies the kind type parameter.

The KIND intrinsic function returns the kind type parameter of its argument. See
[“KIND(X)” on page 475| for details.

Data Objects

A data object is a variable, constant, or subobject of a constant.

© Copyright IBM Corp. 1990, 2003 21

A variable can have a value and can be defined or redefined during execution of an
executable program. A variable can be:

* A scalar variable name

* An array variable name

* A subobject

A subobject (of a variable) is a portion of a named object that can be referenced and
defined. It can be:

* An array element

e An array section

* A character substring

* A structure component

A subobject of a constant is a portion of a constant. The referenced portion may
depend on a variable value.

Constants

A constant has a value and cannot be defined or redefined during execution of an
executable program. A constant with a name is a named constant (see
["'PARAMETER” on page 338). A constant without a name is a literal constant. A
literal constant can be of intrinsic type or it can be typeless (hexadecimal, octal,
binary, or Hollerith). The optional kind type parameter of a literal constant can
only be a digit string or a scalar integer named constant.

A signed literal constant can have a leading plus or minus sign. All other literal
constants must be unsigned; they must have no leading sign. The value zero is
considered neither positive nor negative. You can specify zero as signed or
unsigned.

Automatic Objects

An automatic object is a data object that is dynamically allocated within a
procedure. It is a local entity of a subprogram and has a nonconstant character
length and/or a nonconstant array bound. It is not a dummy argument.

An automatic object always has the controlled automatic storage class.

An automatic object cannot be specified in a DATA, EQUIVALENCE, NAMELIST,
or COMMUON statement, nor can the AUTOMATIC, STATIC, PARAMETER, or
SAVE attributes be specified for it. An automatic object cannot be initialized or
defined with an initialization expression in a type declaration statement, but it can
have a default initialization. An automatic object cannot appear in the specification
part of a main program or module.

Intrinsic Types

Integer

| IBM Extension

The following table shows the range of values that XL Fortran can represent using
the integer data type:

22 XL Fortran Advanced Edition for Mac OS X: Language Reference

Kind parameter Range of values
1 -128 through 127
2 -32 768 through 32 767
4 -2 147 483 648 through 2 147 483 647
8 -9 223 372 036 854 775 808 through 9 223 372 036 854 775 807

XL Fortran sets the default kind type parameter to 4. The kind type parameter i
equivalent to the byte size for integer values. Use the -qintsize compiler option
change the default integer size to 2, 4, or 8 bytes. Note that the -qintsize option
similarly affects the default logical size.

| End of IBM Extension

S
to

n page 314 for details on declaring entities of type integer.

The integer type specifier must include the INTEGER keyword. See ['INTEGER”
‘

The form of a signed integer literal constant is:

A

A\
A

—digit
E + } l—_—kind_param—|

kind_param
is either a digit-string or a scalar-int-constant-name

A signed integer literal constant has an optional sign, followed by a string of
decimal digits containing no decimal point and expressing a whole number,

optionally followed by a kind type parameter. A signed, integer literal constant can

be positive, zero, or negative. If unsigned and nonzero, the constant is assumed
be positive.

If kind_param is specified, the magnitude of the literal constant must be
representable within the value range permitted by that kind_param.

to

| IBM Extension

If no kind_param is specified in XL Fortran, and the magnitude of the constant
cannot be represented as a default integer, the constant is promoted to a
representable kind.

XL Fortran represents integers internally in two’s-complement notation, where the

leftmost bit is the sign of the number.

| End of IBM Extension

Examples of Integer Constants

0 ! has default integer size
-173_2 ! 2-byte constant
9223372036854775807 ! Kind type parameter is promoted to 8

Data Types and Data Objects

23

Real

| IBM Extension

The following table shows the range of values that XL Fortran can represent with
the real data type:

Approximate Absolute Approximate Absolute Approximate Precision
Kind Parameter Nonzero Minimum Maximum (decimal digits)
4 1.175494E-38 3.402823E+38 7
8 2.225074D-308 1.797693D+308 15
16 2.225074Q-308 1.797693Q+308 31

XL Fortran sets the default kind type parameter to 4. The kind type parameter is
equivalent to the byte size for real values. Use the -qrealsize compiler option to
change the default real size to 4 or 8 bytes. Note that the -qrealsize option affects
the default complex size.

XL Fortran represents REAL(4) and REAL(8) numbers internally in the ANSI/IEEE
binary floating-point format, which consists of a sign bit (s), a biased exponent (e),
and a fraction (f). The REAL(16) representation is based on the REAL(8) format.

REAL(4)

Bit no. 0....|....1....]....2....]....3.
seeeeceeef fIFfffffffffffffffffff

REAL(8)

Bit no. O....|....1....] .20]3]] a5 .. LBl
seeeeeeeeeeeffef

REAL(16)

Bit no. 0....]....1....]e2ein]3] e niden o5l Ll
seeeeeeeeeeef ffifefef

Bit no. .|....7 | 8 | 9 | 0 | 1 | 2

ST TRTTES P A St O

This ANSI/IEEE binary floating-point format also provides representations for
+infinity, -infinity, and NaN (not-a-number) values. A NaN can be further classified

as a quiet NaN or a signaling NaN. See [XL Fortran Floating-Point Processingin the
for details on the internal representation of NaN values.

| End of IBM Extension

A real type specifier must include either the REAL keyword or the DOUBLE
PRECISION keyword. The precision of DOUBLE PRECISION values is twice that
of default real values. (The term single precision refers to the IEEE 4-byte
representation, and the term double precision refers to the IEEE 8-byte
representation.) Seel”REAL" on page 356| and |”DOUBLE PRECISION” on page 269|
for details on declaring entities of type real.

The forms of a real literal constant are:
* A basic real constant optionally followed by a kind type parameter

* A basic real constant followed by an exponent and an optional kind type
parameter

* An integer constant (with no kind_param) followed by an exponent and an
optional kind type parameter

24 XL Fortran Advanced Edition for Mac OS X: Language Reference

A basic real constant has, in order, an optional sign, an integer part, a decimal
point, and a fractional part. Both the integer part and fractional part are strings of
digits; you can omit either of these parts, but not both. You can write a basic real
constant with more digits than XL Fortran will use to approximate the value of the
constant. XL Fortran interprets a basic real constant as a decimal number.

The form of a real constant is:

y
Yy

Y digit exponent >

Y digit

e | \\
v digitl
—Ydigit
:‘ \\’—JJ I—exponent—|
Y digit

l—_—kind _param—|

I—exponen t—l

T
o+

exponent
E igit_string >
ED +
Qx -
kind_param is either a digit-string or a scalar-int-constant-name

digit_string denotes a power of 10. E specifies a constant of type default real. D
specifies a constant of type default DOUBLE PRECISION. * Q specifies a
constant of type REAL(16) in XL Fortran.

If both exponent and kind_param are specified, the exponent letter must be E. If D or
Q is specified, kind_param must not be specified.

A real literal constant that is specified without an exponent and a kind type
parameter is of type default real.

Examples of Real Constants
Example 1:

+0.

Data Types and Data Objects 25

Example 2:

+5.432E02_16 !
543.2 in 16-byte representation

Example 3:
7.E3

| IBM Extension
Example 4:

3.4Q-301
I Extended-precision constant

| End of IBM Extension

Complex

A complex type specifier must include either:
* the COMPLEX keyword, or

. in XL Fortran, the DOUBLE COMPLEX keyword

See [“COMPLEX” on page 250 and [“DOUBLE COMPLEX” on page 266|for details
on declaring entities of type complex.

| IBM Extension |

The following table shows the values that XL Fortran can represent for the kind
type parameter and the length specification when the complex type specifier has
the COMPLEX keyword:

Kind Type Parameter i Length Specification j
COMPLEX() COMPLEX?j
4 8
8 16
16 32

| End of IBM Extension |

The kind of a complex constant is determined by the kind of the constants in the
real and imaginary parts in all Fortran compilers.

| IBM Extension |
In XL Fortran, the kind type parameter specifies the precision of each part of the
complex entity, while the length specification specifies the length of the whole

complex entity.

The precision of DOUBLE COMPLEX values is twice that of default complex
values.

Scalar values of type complex can be formed using complex constructors. The form
of a complex constructor is:

26 XL Fortran Advanced Edition for Mac OS X: Language Reference

»»—(expression , expression)

A\
A

A complex literal constant is a complex constructor where each expression is a pair
of initialization expressions. Variables and expressions can be used in each part of

the complex constructor as an XL Fortran extension.

| End of IBM Extension

| Fortran 95

In Fortran 95 you are only allowed to use a single signed integer, or real literal

constant in each part of the complex constructor.

| End of Fortran 95

If both parts of the literal constant are of type real, the kind type parameter of the
literal constant is the kind parameter of the part with the greater precision, and the

kind type parameter of the part with lower precision is converted to that of the

other part.

If both parts are of type integer, they are each converted to type default real. If one
part is of type integer and the other is of type real, the integer is converted to type

real with the precision of type real.

See ["COMPLEX” on page 250 and ['DOUBLE COMPLEX” on page 266|for details

on declaring entities of type complex.

| IBM Extension

Each part of a complex number has the following internal representation: a sign bit

(s), a biased exponent (e), and a fraction (f).

COMPLEX (4)
(equivalent to COMPLEXx8)
Bit no. 0....]..o loeeu]eeei2eini] e 3eii]eeiibe] 5]l lBe

seeeeeeeef ffffffffffffffffffffffseeececeefffffffffffffffffffffff

COMPLEX(8) (equivalent to COMPLEX*16)

Bit no. O....|....1....]....2.c o3t a5l LBe L
seeceeeeceeeffiffffiff

Bit no. .|..o.7ueii] e8] 9]0 20
seeeeeceeeeef ffef

COMPLEX(16) (equivalent to COMPLEX32)

Bit no. 0....|....leeeu]eeii2eiin] e 3] ee b o5l]l
seeeeeeeeeeef ffefef

Bit no. |e.e 7uii] e8] 9] 0] 20]
seeeeceeeeeef fff

Bit no. ..3....]... 8|5 eebe] 7] 8]0,
seececeeeeeef fffiffffeff

Bit no. ...|eeauOueu]eeailoni]eii2oi]3] aibl L5
seececeeceeefffififf

| End of IBM Extension

Examples of Complex Constants
Example 1:

Data Types and Data Objects

27

(3.2,-1.86) ! Integer constant 3 is converted to
default real
I for constant 3.0

| IBM Extension

Example 2:

(45Q6,6D45)
I The imaginary part is converted to extended
I precision 6.Q45

Example 3:

(1+1,2+2) I Use of
constant expressions. Both parts are
I converted to default real

| End of IBM Extension

Logical

| IBM Extension

The following table shows the values that XL Fortran can represent using the
logical data type:

Kind parameter Values Internal (hex) Representation
1 .ITRUE. 01
.FALSE. 00
2 .TRUE. 0001
.FALSE. 0000
4 .TRUE. 00000001
.FALSE. 00000000
8 .TRUE. 0000000000000001
.FALSE. 0000000000000000

Note: Any internal representation other than 1 for .TRUE. and 0 for .FALSE. is
undefined.

XL Fortran sets the default kind type parameter to 4. The kind type parameter is
equivalent to the byte size for logical values. Use the -qintsize compiler option to
change the default logical size to 2, 4, or 8 bytes. Note that the -qintsize option
similarly affects the default integer size. Use —qintlog to mix integer and logical
data entities in expressions and statements.

| End of IBM Extension

The logical type specifier must include the LOGICAL keyword. See ["LOGICAL”
‘

n page 323 for details on declaring entities of type logical.

The form of a logical literal constant is:

28 XL Fortran Advanced Edition for Mac OS X: Language Reference

.TRUE.
.FALSE —| l—_—kind_param—|

A\
A

kind_param
is either a digit-string or a scalar-int-constant-name

A logical constant can have a logical value of either true or false.

| IBM Extension

You can also use the abbreviations T and F (without the periods) for .TRUE. and
.FALSE., respectively, but only in formatted input, or as initial values in DATA
statements, STATIC statements, or type declaration statements. A kind type
parameter cannot be specified for the abbreviated form. If T or F has been defined
as a named constant, it is treated as a named constant rather than the logical literal
constant.

| End of IBM Extension

Examples of Logical Constants

.FALSE. 4
.TRUE.

Character

The character type specifier must include the CHARACTER keyword. See
[“"CHARACTER” on page 240|for details on declaring entities of type character.

The form of a character literal constant is:

»>p-

"—character_string— ><
|—kind_par‘am—_J |—”—char‘acter_s tring—”J

kind_param
is either a digit-string or a scalar-int-constant-name

| IBM Extension |

XL Fortran supports a kind type parameter value of 1, representing the ASCII
collating sequence.

| End of IBM Extension |

Character literal constants can be delimited by double quotation marks as well as
apostrophes.

character_string consists of any characters capable of representation in XL Fortran,
except the new-line character (\n), because it is interpreted as the end of the source
line. The delimiting apostrophes (") or double quotation marks (") are not part of
the data represented by the constant. Blanks embedded between these delimiters
are significant.

Data Types and Data Objects 29

If a string is delimited by apostrophes, you can represent an apostrophe within the
string with two consecutive apostrophes (without intervening blanks). If a string is
delimited by double quotation marks, you can represent a double quotation mark
within the string with two consecutive double quotation marks (without
intervening blanks). The two consecutive apostrophes or double quotation marks
will be treated as one character.

You can place a double quotation mark within a character literal constant delimited
by apostrophes to represent a double quotation mark, and an apostrophe character
within a character constant delimited by double quotation marks to represent a
single apostrophe.

The length of a character literal constant is the number of characters between the
delimiters, except that each pair of consecutive apostrophes or double quotation

marks counts as one character.

A zero-length character object uses no storage.

| IBM Extension
In XL Fortran each character object requires 1 byte of storage.

For compatibility with C language usage, XL Fortran recognizes the following
escape sequences in character strings:

Escape Meaning

\b Backspace

\f Form feed

\n New-line

\r Carriage return

\t Tab

\O Null

\’ Apostrophe
(does not terminate a string)

\" Double quotation mark
(does not terminate a string)

AR\ Backslash

\Xx x, where x is any other character

To ensure that scalar character initialization expressions in procedure references are
terminated with null characters (\0) for C compatibility, use the -qnullterm
compiler option. (See [-qnullterm Option|in the [User’s Guidd for details and
exceptions).

All escape sequences represent a single character.

| End of IBM Extension |

If you do not want these escape sequences treated as a single character, specify the
-qnoescape compiler option. (See -qescape Option| in the |User’s Guidel) The

backslash will have no special significance.

30 XL Fortran Advanced Edition for Mac OS X: Language Reference

The maximum length of a character literal constant depends on the maximum
number of characters allowed in a statement.

| IBM Extension |

If you specity the -qctyplss compiler option, character constant expressions are
treated as if they are Hollerith constants. See|”Hollerith Constants” on page 54| for
information on Hollerith constants. For information on the -qctyplss compiler
option, see [-qctyplss Option|in the [User’s Guidd

XL Fortran supports multibyte characters within character literal constants,
Hollerith constants, H edit descriptors, character-string edit descriptors, and
comments through the -qmbcs compiler option.

Support is also provided for Unicode characters and filenames. If the environment
variable LANG is set to UNIVERSAL and the -qmbcs compiler option is specified,
the compiler can read and write Unicode characters and filenames. (See the
for more information.)

| End of IBM Extension |

Examples of Character Constants

Example 1:

" I Zero-length character
constant

Example 2:

1_"ABCDEFGHIJ" ! Character constant of

length 10, with kind 1

| IBM Extension
Example 3:

ARAVARRV.LIVARRNN
I Character constant of length 10 "2'A567\\"

| End of IBM Extension |

Character Substrings

A character substring is a contiguous portion of a character string (called a parent
string), which is a scalar variable name, scalar constant, scalar structure
component, or array element. A character substring is identified by a substring
reference whose form is:

scalar_variable_name (:) <
array_element——— |—int_exprl —| l—int_exprZ—l

scalar_constant
scalar_struct_comp—

Data Types and Data Objects 31

int_exprl and int_expr2
specify the leftmost character position and rightmost character position,
respectively, of the substring. Each is a scalar integer expression called a
substring expression.

The length of a character substring is the result of the evaluation of MAX(int_expr2
- int_exprl + 1,0).

If int_expr1 is less than or equal to int_expr2, their values must be such that:
e 1 =int_exprl = int_expr2 < length

where length is the length of the parent string. If int_exprl is omitted, its default
value is 1. If int_expr2 is omitted, its default value is length.

| IBM Extension

FORTRAN 77 does not allow character substrings of length 0. Fortran 90 and up
does allow these substrings. To perform compile-time checking on substring
bounds in accordance with FORTRAN 77 rules, use thecompﬂer
option. For Fortran 90 compliance, use To perform run-time checking

on substring bounds, use both the option and the (or
option. (See the for more information.)

| End of IBM Extension

A substring of an array section is treated differently. See [“Array Sections and|
[Substring Ranges” on page 79/

Examples of Character Substrings:

CHARACTER(8) ABC, X, Y, Z
ABC = 'ABCDEFGHIJKL'(1:8) ! Substring of a constant

X = ABC(3:5) ! X = "CDE'
Y = ABC(-1:6) ! Not allowed in either FORTRAN 77 or Fortran 90
Z = ABC(6:-1) 1 7 ="' valid only in Fortran 90

BYTE

| IBM Extension

The byte type specifier is the BYTE keyword in XL Fortran. See ['BYTE” on page|
for details on declaring entities of type byte.

The BYTE intrinsic data type does not have its own literal constant form. A BYTE
data object is treated as an INTEGER(1), LOGICAL(1), or CHARACTER() data
object, depending on how it is used. See [“Using Typeless Constants” on page 54/

| End of IBM Extension

32 XL Fortran Advanced Edition for Mac OS X: Language Reference

Derived Types

You can create additional data types, known as derived types, from intrinsic data
types and other derived types. You require a type definition to define the name of
the derived type (type_name), as well as the data types and names of the
components of the derived type.

| IBM Extension

A record structure is a popular extension for manipulating aggregate non-array
data. The record structure predates the introduction of derived types in Fortran 90.

The syntax used for record structures parallels that used for Fortran derived types
in most cases. Also, in most cases, the semantics of the two features are parallel.
For these reasons, record structures are supported in XL Fortran in a way that
makes the two features almost completely interchangeable. Hence,

* An entity of a derived type declared using either syntax can be declared using
either a TYPE statement or a RECORD statement.

* A component of an object of derived type can be selected using either the
percent sign or period.

* A derived type declared using the record structure declaration has a structure
constructor.

* A component of any derived type can be initialized using either the standard
"equals” form of initialization or the extended "double slashes” form of
initialization.

There are differences, however, as outlined here:

* A standard derived type declaration cannot have a %FILL component.

* A record structure declaration must not have a SEQUENCE or PRIVATE
statement.

* The -qalign option applies only to derived types declared using a record
structure declaration. See the ption described in the
for more detail.

* A derived type declared using a record structure declaration may have the same
name as an intrinsic type.

* There are differences in the rules for determination of derived types declared
using a record structure declaration and those declared using a standard derived
type declaration.

| End of IBM Extension |

Data Types and Data Objects 33

A\
A

»»—DERIVED _TYPE_statement

[
>

Lpriva TE_SEQUENCE_bZock—l

»>—component_def stmt_block ><

v
A

»»—£ND_TYPE_statement

DERIVED_TYPE_statement
See [“Derived Type” on page 261 for syntax details.

PRIVATE_SEQUENCE_block
includes the PRIVATE statement (keyword only) and/or the SEQUENCE
statement. Only one of each statement can be specified. See
page 346 and [“SEQUENCE” on page 367|for details on syntax.

component_def_stmt_block
consists of one or more type declaration statements to define the
components of the derived type. The type declaration statements can
specify only the DIMENSION, POINTER and ALLOCATABLE attributes.
See ["Type Declaration” on page 378 for detailed syntax and information.

| Fortran 95 |
In addition, Fortran 95 allows you to specify a default initialization for
each component in the definition of a derived type. See [“Type Declaration”|
for detailed syntax and information.

| End of Fortran 95 |

END_TYPE_statement
See ["END TYPE” on page 280

| Fortran 95

Direct components of a derived type in Fortran 95 are:
* the components of that type

* the direct components of a derived type component without ALLOCATABLE or
POINTER attribute.

| End of Fortran 95 |

Each derived type is resolved into ultimate components of intrinsic data type,
alloctable, or pointer.

The type name is a local entity. It cannot be the same name as any of the intrinsic
data types except BYTE and DOUBLE COMPLEX.

34 XL Fortran Advanced Edition for Mac OS X: Language Reference

The END TYPE statement can optionally contain the same fype_name as specified
on the TYPE statement.

The components of a derived type can specify any of the intrinsic data types.
Components can also be of a previously defined derived type. A pointer
component can be of the same derived type that it is a component of. Within a
derived type, the names of components must be unique, although they can be
different from names outside the scope of the derived-type definition. Components
that are declared to be of type CHARACTER must have length specifications that
are constant specification expressions; asterisks are not allowed as length specifiers.
Nonpointer array components must be declared with constant dimension
declarators. Pointer array components must be declared with a
deferred_shape_spec_list.

By default, no storage sequence is implied by the order of the component
definitions. However, if you specify the SEQUENCE statement, the derived type
becomes a sequence derived type. For a sequence derived type, the order of the
components specifies a storage sequence for objects declared with this derived
type. If a component of a sequence derived type is of a derived type, that derived
type must also be a sequence derived type.

The size of a sequence derived type is equal to the number of bytes of storage
needed to hold all of the components of that derived type.

Use of sequence derived types can lead to misaligned data, which can adversely
affect the performance of the program.

The PRIVATE statement can only be specified if the derived-type definition is
within the specification part of a module. If a component of a derived type is of a
type declared to be private, either the derived-type definition must contain the
PRIVATE statement or the derived type itself must be private.

If a type definition is private, the following are accessible only within the defining
module:

¢ The type name

* Structure constructors for the type

* Any entity of the type

* Any procedure that has a dummy argument or function result of the type

If a derived-type definition contains a PRIVATE statement, its components are
accessible only within the defining module, even if the derived type itself is public.
Structure components can only be used in the defining module.

A component of a derived-type entity cannot appear as an input/output list item if
any ultimate component of the object cannot be accessed by the scoping unit of the
input/output statement. A derived-type object cannot appear in a data transfer
statement if it has a component that is a pointer or allocatable.

A scalar entity of derived type is called a structure. A scalar entity of sequence
derived type is called a sequence structure. The type specifier of a structure must
include the TYPE keyword, followed by the name of the derived type in
parentheses. See [*TYPE” on page 374 for details on declaring entities of a specified
derived type. The components of a structure are called structure components. A
structure component is one of the components of a structure or is an array whose
elements are components of the elements of an array of derived type.

Data Types and Data Objects 35

An object of a private derived type cannot be used outside the defining module.

Default initialization may be specified using an equal sign followed by an
initialization expression, or by using an initial_value_list enclosed in slashes. You
can use this form of initialization for components declared using either a record
structure declaration or a standard derived type declaration.

| Fortran 95 |

In Fortran 95 a candidate data object for default initialization is a named data
object that:

1. is of derived type with default initialization specified for any of its direct
components.

2. has neither the POINTER, nor the ALLOCATABLE attribute.
3. is not use or host associated.
4. is not a pointee.

A default initialization for a non-pointer component will take precedence over any
default initialization appearing for any direct component of its type.

If a dummy argument with INTENT(OUT) is of a derived type with default
initialization, it must not be an assumed-size array. If a non-pointer object or
subobject has been specified with default initialization in a type definition, it must
not be initialized by a DATA statement.

| End of Fortran 95 |

| IBM Extension |

A data object of derived type with default initialization can be specified in a
common block as an IBM extension. In addition, default initialization does not
imply the SAVE attribute in XL Fortran unless -qsave=defaultinit has been
specified.

| End of IBM Extension |

| Fortran 95 |

Unlike explicit initialization, it is not necessary for a data object to have the SAVE
attribute for component default initialization to have an effect. You can specify
default initialization for some components of a derived type, but it is not necessary
for every component.

You can specify default initialization for a storage unit that is storage associated.
However, the objects or subobjects supplying the default initialization must be of
the same type. The objects or subobjects must also have the same type parameters
and supply the same value for the storage unit.

A direct component will receive an initial value if you specify a default
initialization on the corresponding component definition in the type definition,
regardless of the accessibility of the component.

For candidate data objects for default initialization, their nonpointer components

are either initially defined, or become defined by their corresponding default

36 XL Fortran Advanced Edition for Mac OS X: Language Reference

initialization expressions, and their pointer components are either initially
disassociated, or become disassociated if one of the following conditions is met:

* become initially defined or disassociated:
— the data object in question has the SAVE attribute.

— if you declare the data object in question in a BLOCK DATA unit, module, or
main program unit.

* become defined or disassociated:
— a function with the data object in question as its result is invoked

— a procedure with the data object in question as an INTENT(OUT) dummy
argument is invoked.

— a procedure with the data object in question as a local object is invoked, and
the data object does not have the SAVE attribute.

Allocation of an object of a derived type in which you specify a default
initialization for a component will cause the component to:

* become defined, if it is a non-pointer component
* become disassociated, if it is a pointer component

In a subprogram with an ENTRY statement, default initialization only occurs for
the dummy arguments that appear in the argument list of the procedure name
referenced. If such a dummy argument has the OPTIONAL attribute, default
initialization will only occur if the dummy argument is present.

Module data objects, which are of derived type with default initializations must
have the SAVE attribute, if they are candidate data objects for default initialization.

| End of Fortran 95 |

The size of a sequence derived type declared using a standard derived type
declaration is equal to the sum of the number of bytes required to hold all of its
components.

The size of a sequence derived type declared using a record structure declaration
is equal to the sum of the number of bytes required to hold all of its components
and its padding.

Previously, a numeric sequence structure or character sequence structure that
appeared in a common block was treated as if its components were enumerated
directly in the common block. Now, that only applies to structures of a type
declared using a standard derived type declaration.

Input/Output

In namelist input, a structure is expanded into a list of its non-filler ultimate
components.

In namelist output, a structure is expanded into the values of its non-filler ultimate
components.

In a formatted data transfer statement (READ, WRITE or PRINT), only

components of entities of derived type that are not %FILL components are treated
as if they appeared in the input-item-list or the output-item-list.

Data Types and Data Objects 37

Any %FILL field in an entity of derived type is treated as padding in an
unformatted data transfer statement.

Determining Type for Derived Types

Two data objects have the same derived type if they are declared with reference to
the same derived-type definition.

If the data objects are in different scoping units, they can still have the same
derived type. Either the derived-type definition is accessible via host or use
association, or the data objects reference their own derived-type definitions with
the following conditions:

* They were declared using standard derived type declarations, have the same
name, have the SEQUENCE property, and have components that do not have
PRIVATE accessibility and agree in order, name and attributes; or

* They were declared using record structure declarations that were not unnamed,
the types have the same name, have no %FILL components and have
components that agree in order and attributes, and any %FILL components
appear in the same positions in both.

A derived-type definition that specifies SEQUENCE is not the same as a definition
declared to be private or that has components that are private.

Example of Determining Type with Derived Types
PROGRAM MYPROG

TYPE NAME I Sequence derived type
SEQUENCE
CHARACTER(20) LASTNAME
CHARACTER(10) FIRSTNAME
CHARACTER(1) INITIAL
END TYPE NAME
TYPE (NAME) PER1

CALL MYSUB(PER1)
PER1 = NAME('Smith','John','K") I Structure constructor
CALL MYPRINT(PER1)

CONTAINS
SUBROUTINE MYSUB(STUDENT) ! Internal subroutine MYSUB
TYPE (NAME) STUDENT ! NAME is accessible via host association
END SUBROUTINE MYSUB
END
SUBROUTINE MYPRINT (NAMES) ! External subroutine MYPRINT
TYPE NAME ! Same type as data type in MYPROG

SEQUENCE

CHARACTER(20) LASTNAME

CHARACTER(10) FIRSTNAME

CHARACTER(1) INITIAL
END TYPE NAME
TYPE (NAME) NAMES I NAMES and PER1 from MYPROG
PRINT *, NAMES ! have the same data type

END SUBROUTINE

An Example with Different Component Names

MODULE MOD
STRUCTURE /S/
INTEGER I
INTEGER, POINTER :: P
END STRUCTURE

38 XL Fortran Advanced Edition for Mac OS X: Language Reference

RECORD /S/ R

END MODULE
PROGRAM P
USE MOD,

ONLY: R

STRUCTURE /S/

INTEGER J

INTEGER, POINTER :: Q
END STRUCTURE
RECORD /S/ R2

R=R2!
!

0K - same type name, components have same attributes and
type (but different names)

END PROGRAM P

Structure Components
Structure components can be of any explicit type, including derived type.

Note: The case in which a structure component has a subobject that is an array or
array section requires some background information from [“Array Sections”|

on page 75,
on page 79.
to structure

and is explained in [“Array Sections and Structure Components’|
The following rules for scalar structure components apply also
components that have array subobjects.

Data Types and Data Objects 39

You can refer to a specific structure component using a component designator. A
scalar component designator has the following syntax:

scalar_struct_comp:

»>—name >

I—(—int_expr_l ist—)—|

V

separator comp_name |_ _|
(—int_expr_list—)

A\
A

»—separator comp_name |_ _|
(—int_expr_list—)

name is the name of an object of derived type

comp_name
is the name of a derived-type component

int_expr
is a scalar integer or real expression called a subscript expression

separator
is% orp _m | .[M 4

The structure component has the same type, type parameters, and POINTER
attribute (if any) as the right-most comp_name. It inherits any INTENT, TARGET,
and PARAMETER attributes from the parent object.

Notes:
1. Each comp_name must be a component of the immediately preceding name or
comp_name.

2. The name and each comp_name, except the right-most, must be of derived type.

3. The number of subscript expressions in any int_expr_list must equal the rank of
the preceding name or comp_name.

4. If name or any comp_name is the name of an array, it must have an int_expr_list.
5. The right-most comp_name must be scalar.

In namelist formatting, a separator must be a percent sign.

If an expression has a form that could be interpreted either as a structure
component using periods as separators or as a binary operation, and an operator
with that name is accessible in the scoping unit, XL Fortran will treat the
expression as a binary operation. If that is not the interpretation you intended, you
should use the percent sign to dereference the parts, or, in free source form, insert
white space between the periods and the comp_name.

Examples of References to Structure Components:

Example 1: Ambiguous use of a period as separator

40 XL Fortran Advanced Edition for Mac OS X: Language Reference

MODULE MOD
STRUCTURE /S1/
STRUCTURE /S2/ BLUE
INTEGER I
END STRUCTURE
END STRUCTURE
INTERFACE OPERATOR(.BLUE.)
MODULE PROCEDURE BLUE
END INTERFACE
CONTAINS
INTEGER FUNCTION BLUE(RL, I)
RECORD /S1/ R1
INTENT(IN) :: R1
INTEGER, INTENT(IN) :: I
BLUE = RI%BLUESI + I
END FUNCTION BLUE
END MODULE MOD

PROGRAM P
USE MOD
RECORD /S1/ R1
R1%BLUE%I = 17
I =13
PRINT *, R1.BLUE.I ! Calls BLUE(R1,I) - prints 30
PRINT =, RI%BLUE%I ! Prints 17
END PROGRAM P

Example 2: Mix of separators

STRUCTURE /S1/
INTEGER I
END STRUCTURE
STRUCTURE /S2/
RECORD /S1/ C
END STRUCTURE
RECORD /S2/ R
R.C%I = 17 ! OK
R%C.I =3 ! OK
R%C%.I = 13 | OK
R.C.I =19 ! OK
END

Example 3: Percent and period work for any derived types

STRUCTURE /S/
INTEGER I, J
END STRUCTURE
TYPE DT
INTEGER I, J
END TYPE DT
RECORD /S/ R1
TYPE(DT) :: R2

R1.I = 17; R1%J = 13
R2.1 = 19; R2%J = 11

END

Allocatable Components

| IBM Extension |
Allocatable components are defined as ultimate components just as pointer

components are. This is because the value (if any) is stored separately from the rest
of the structure, and this storage does not exist (because the object is unallocated)

Data Types and Data Objects 41

Allocatable Components - IBM Extension

when the structure is created. As with ultimate pointer components, variables
containing ultimate allocatable components are forbidden from appearing directly
in input/output lists.

As with allocatable arrays, allocatable components are forbidden from storage
association contexts. So, any variable containing an ultimate, allocatable component
cannot appear in COMMON or EQUIVALENCE. However, allocatable
components are permitted in SEQUENCE types, which allows the same type to be
defined separately in more than one scoping unit.

Deallocation of a variable containing an ultimate allocatable component
automatically deallocates all such components of the variable that are currently
allocated.

In a structure constructor for a derived type containing an allocatable component,
the expression corresponding to the allocatable component must be one of the
following:

* An argumentless reference to the intrinsic function NULL(). The allocatable
component receives the allocation status of not currently allocated

* A variable that is itself allocatable. The allocatable component receives the
allocation status of the variable and, if it is allocated, the value of the variable. If
the variable is an array that is allocated, the allocatable component also has the
bounds of the variable.

* Any other expression. The allocatable component receives the allocation status of
currently allocated with the same value as the expression. If the expression is an
array, the allocatable component will have the same bounds.

For intrinsic assignment of those objects of a derived type containing an allocatable
component, the allocatable component of the variable on the left-hand-side receives
the allocation status and, if allocated, the bounds and value of the corresponding
component of the expression. This occurs as if the following sequence of steps is
carried out:

1. If the component of the variable is currently allocated, it is deallocated.

2. If the corresponding component of the expression is currently allocated, the
component of the variable is allocated with the same bounds. The value of the
component of the expression is then assigned to the corresponding component
of the variable using intrinsic assignment.

An allocated ultimate allocatable component of an actual argument that is
associated with an INTENT(OUT) dummy argument is deallocated on procedure
entry so that the corresponding component of the dummy argument has an
allocation status of not currently allocated.

This ensures that any pointers that point to the previous contents of the allocatable
component of the variable become undefined.

Example:

MODULE REAL_POLYNOMIAL MODULE
TYPE REAL_POLYNOMIAL
REAL, ALLOCATABLE :: COEFF(:)
END TYPE
INTERFACE OPERATOR(+)
MODULE PROCEDURE RP_ADD RP, RP_ADD R
END INTERFACE
CONTAINS
FUNCTION RP_ADD R(P1,R)

42 XL Fortran Advanced Edition for Mac OS X: Language Reference

Allocatable Components - IBM Extension

TYPE (REAL_POLYNOMIAL) RP_ADD R, Pl
REAL R
INTENT(IN) P1,R
ALLOCATE (RP_ADD_R%COEFF (SIZE (P1%COEFF)))
RP_ADD_R%COEFF = P1%COEFF
RP_ADD_R%COEFF(1) = P1%COEFF(1) + R
END FUNCTION
FUNCTION RP_ADD RP(P1,P2)
TYPE (REAL_POLYNOMIAL) RP_ADD RP, P1, P2
INTENT(IN) P1, P2
INTEGER M
ALLOCATE (RP_ADD_RP%COEFF (MAX (SIZE (P1%COEFF), SIZE(P2%COEFF))))
M = MIN(SIZE(P1%COEFF), SIZE(P2%COEFF))
RP_ADD_RP%COEFF(:M) = P1%COEFF(:M) + P2%COEFF(:M)
IF (SIZE(P1%COEFF)>M) THEN
RP_ADD_RP%COEFF (M+1:) = P1%COEFF(M+1:)
ELSE IF (SIZE(P2%COEFF)>M) THEN
RP_ADD_RP%COEFF (M+1:) = P2%COEFF(M+1:)
END IF
END FUNCTION
END MODULE

PROGRAM EXAMPLE
USE REAL_POLYNOMIAL MODULE
TYPE(REAL_POLYNOMIAL) P, Q, R
P = REAL_POLYNOMIAL((/4,2,1/)) ! Set P to (X+*2+2X+4)
Q = REAL_POLYNOMIAL((/1,1/)) ! Set Q to (X+1)
R=P+ Q! Polynomial addition
PRINT *, 'Coefficients are: ', R%COEFF
END

| End of IBM Extension

Structure Constructor

A\
A

»»>—type name—(—expr_list—)

type_name
is the name of the derived type

expr is an expression. Expressions are defined under [“Expressions and|
[Assignment” on page 85.|

A structure constructor allows a scalar value of derived type to be constructed
from an ordered list of values. A structure constructor must not appear before the
definition of the referenced derived type.

expr_list contains one value for each component of the derived type. The sequence
of expressions in the expr_list must agree in number and order with the
components of the derived type. The type and type parameters of each expression
must be assignment-compatible with the type and type parameters of the
corresponding component. Data type conversion is performed if necessary.

A component that is a pointer can be declared with the same type that it is a
component of. If a structure constructor is created for a derived type containing a
pointer, the expression corresponding to the pointer component must evaluate to
an object that would be an allowable target for such a pointer in a pointer

Data Types and Data Objects 43

assignment statement.

| IBM Extension

If a component of a derived type is allocatable, the corresponding constructor
expression will either be a reference to the intrinsic function NULL() with no
arguments, an allocatable entity, or will evaluate to an entity of the same rank. If
the expression is a reference to the intrinsic function NULL(), the corresponding
component of the constructor has a status of not currently allocated. If the
expression is an allocatable entity, the corresponding component of the constructor
has the same allocation status as that of allocatable entity and, if it is allocated, it’s
same bounds (if any) and value. Otherwise, the corresponding component of the
constructor has an allocation status of currently allocated, and has the same
bounds (if any) and value as the expression.

If a component using a record structure declaration is %FILL, the structure
constructor for that type cannot be used.

If a derived type is accessible in a scoping unit and there is a local entity of class 1
that is not a derived type with the same name accessible in the scoping unit, the
structure constructor for that type cannot be used in that scope.

| End of IBM Extension

Examples of Derived Types: Example 1:

MODULE PEOPLE
TYPE NAME
SEQUENCE I Sequence derived type
CHARACTER(20) LASTNAME
CHARACTER(10) FIRSTNAME
CHARACTER(1) INITIAL
END TYPE NAME

TYPE PERSON I Components accessible via use
! association
INTEGER AGE
INTEGER BIRTHDATE(3) ! Array component
TYPE (NAME) FULLNAME ! Component of derived type
END TYPE PERSON
END MODULE PEOPLE

PROGRAM TEST1
USE PEOPLE
TYPE (PERSON) SMITH, JONES
SMITH = PERSON(30, (/6,30,63/), NAME('Smith','John','K'))
! Nested structure constructors

JONES%AGE = SMITH%AGE I Component designator
CALL TEST2
CONTAINS

SUBROUTINE TEST2
TYPE T
INTEGER EMP_NO
CHARACTER, POINTER :: EMP_NAME(:) ! Pointer component
END TYPE T
TYPE (T) EMP_REC
CHARACTER, TARGET :: NAME(10)

EMP_REC = T(24744 ,NAME) ! Pointer assignment occurs
END SUBROUTINE ! for EMP_REC%EMP_NAME

END PROGRAM

44 XL Fortran Advanced Edition for Mac OS X: Language Reference

| Fortran 95

Example 2:

PROGRAM LOCAL_VAR
TYPE DT
INTEGER A
INTEGER :: B
END TYPE

80

TYPE(DT) DT_VAR ! DT_VAR%B IS INITIALIZED
END PROGRAM LOCAL_VAR

Example 3:

MODULE MYMOD
TYPE DT
INTEGER :: A = 40
INTEGER, POINTER :: B => NULL()

END TYPE
END MODULE
PROGRAM DT_INIT
USE MYMOD
TYPE(DT), SAVE :: SAVED(8) ! SAVED%A AND SAVED%B ARE INITIALIZED
TYPE(DT) LOCAL(5) ! LOCAL%A LOCAL%B ARE INITIALIZED

END PROGRAM

| End of Fortran 95

Record Structures

| IBM Extension

Declaring Record Structures

Declaring a record structure declares a user-defined type in the same way that a
standard Fortrandeﬁnition declares a user-defined type. A type
declared using a record structure declaration is a derived type. For the most part,
rules that apply to derived types declared using the standard Fortran syntax apply
to derived types declared using the record structure syntax. In those cases where
there is a difference, the difference will be called out by referring to the two as
derived types declared using a record structure declaration and derived types
declared using a standard derived type declaration.

Record structure declarations follow this syntax:

record_structure_dcl:

Data Types and Data Objects 45

Record Structures - IBM Extension

»—structure_stmt

A\
A

Y

struct_comp_dcl_item ><

\4
A

»—end_structure_stmt

struct_comp_dcl_item:

>> component_def stmt <
Erecord_s tructure_dcl—

parameter_stmt

where component_def stmt is a type declaration statement used to define the
components of the derived type.

structure_stmt:

»>—STRUCTURE

Y
A

l—/str‘ucture_name/—I |—componen t dcl_lis t—l

component_dcl:

»>—Q

v
A

I—(-army_spec-)—|
where a is an object name.

A structure statement declares the structure_name to be a derived type in the
scoping unit of the nearest enclosing program unit, interface body or subprogram.
The derived type is a local entity of class 1 in that scoping unit.

A structure statement may not specify a component_dcl_list unless it is nested in
another record structure declaration. Likewise, the structure_name of a structure
statement cannot be omitted unless it is part of a record_structure_dcl that is nested
in another record structure declaration. A record_structure_dcl must have at least
one component.

A derived type declared using a record structure declaration is a sequence derived
type, and is subject to all rules that apply to sequence derived types. A component
of a type declared using a record structure declaration cannot be of a nonsequence
derived type, as is true of sequence derived types declared using standard derived
type declarations. A record structure declaration cannot contain a PRIVATE or
SEQUENCE statement.

A record structure declaration defines a scoping unit. All statements in the
record_structure_dcl are part of the scoping unit of the record structure declaration,
with the exception of any other record_structure_dcl contained in the
record_structure_dcl. These rules are also true of standard derived type declarations,
repeated here for clarity.

46 XL Fortran Advanced Edition for Mac OS X: Language Reference

Record Structures - IBM Extension

A parameter_stmt in a record_structure_dcl declares named constants in the scoping
unit of the nearest enclosing program unit, interface body or subprogram. A named
constant declared in such a parameter_stmt may have the same name as a
component declared in the record_structure_dcl in which it is contained.

Any components declared on a structure_stmt are components of the enclosing
derived type, and are local entities of the enclosing structure’s scoping unit. The
type of such a component is the derived type on whose structure_stmt it is
declared.

Unlike derived types declared using a standard derived type declaration, a derived
type name declared using a record structure declaration may be the same as the
name of an intrinsic type.

In place of the name of a component, %FILL can be used in a component_def stmt
in a record structure declaration. A %FILL component is used as a place-holder to
achieve desired alignment of data in a record structure declaration. Initialization
cannot be specified for a %FILL component. Each instance of %FILL in a record
structure declaration is treated as a unique component name, different from the
names of all other components you specified for the type, and different from all
other %FILL components. %FILL is a keyword and is not affected by the -qmixed
compiler option.

Each instance of a nested structure that has no name is treated as if it had a unique
name, different from the names of all other accessible entities.

As an extension to the rules described on derived types thus far, the direct
components of a derived type declared using a record structure declaration are:

* the components of that type that are not %FILL components; and

¢ the direct components of a derived type component that does not have the
POINTER attribute and is not a %FILL component.

The non-filler ultimate components of a derived type are the ultimate components
of the derived type that are also direct components.

| IBM Extension

An object of a derived type with default initialization can be a member of a
common block. You must ensure that a common block is not initialized in more
than one scoping unit.

| End of IBM Extension

Examples of Declaring Record Structures:

Example 1: Nested record structure declarations - named and unnamed

STRUCTURE /S1/
STRUCTURE /S2/ A ! A is a component of S1 of type S2
INTEGER I
END STRUCTURE
STRUCTURE B ! B is a component of S1 of unnamed type
INTEGER J
END STRUCTURE
END STRUCTURE
RECORD /S1/ R1
RECORD /S2/ R2 ! Type S2 is accessible here.

Data Types and Data Objects 47

Record Structures - IBM Extension

Union

R2.1 = 17
R1.A = R2
R1.B.J =13
END

Example 2: Parameter statement nested in a structure declaration

INTEGER I
STRUCTURE /S/
INTEGER J
PARAMETER(I=17, J=13) ! Declares I and J in scope of program unit to
! be named constants
END STRUCTURE
INTEGER J ! Confirms implicit typing of named constant J
RECORD /S/ R

RJ=T1+1J
PRINT =, R.J ! Prints 30
END

Example 3: %FILL fields

STRUCTURE /S/

INTEGER I, %FILL, %FILL(2,2), J

STRUCTURE /S2/ R1, %FILL, R2

INTEGER I

END STRUCTURE
END STRUCTURE
RECORD /S/ R
PRINT %, LOC(R%J)-LOC(R%I) ! Prints 24 with -qintsize=4
PRINT *, LOC(R%R2)-LOC(R%R1) ! Prints 8 with -qintsize=4
END

Storage Mapping

A derived type declared using a record structure declaration is a sequence derived
type. In memory, objects of such a type will have the components stored in the
order specified. The same is true of objects of a sequence derived type declared
using a standard derived type declaration.

The -qalign option specifies the alignment of data objects in storage, which avoids
performance problems with misaligned data. Both the [no]4k and struct suboptions
can be specified and are not mutually exclusive. The default setting is
-qalign=no4k:struct=natural. [no]4K is useful primarily in combination with logical
volume I/0 and disk striping.

| End of IBM Extension |

and Map

| IBM Extension |

A union declares a group of fields in the enclosing record structure that can share
the data area in a program.

Unions and maps follow this syntax:

union_dcl:

48 XL Fortran Advanced Edition for Mac OS X: Language Reference

IBM Extension

»»—UNION—"-union_dcl_item ><

»>—END UNION ><

union_dcl_item:

»—[map_dc l ><
parameter_s tmtJ

map_dcl:

v
A

»»—MAP——map_dcl_item

»»—END MAP ><

map_dcl_item:

v
A

»—[s truct_comp_dcl_item
record_s tmtg

struct_comp_dcl_item:

>> component_def stmt ><
record_structure_dcl—
parameter_stmt
union_dcl

A union declaration must be defined in a record structure, may be in a map
declaration, and a map declaration must be in a union declaration. All declarations
in a map_dcl_item within a union declaration must be of the same nesting level,
regardless of which map_dcl they reside in. Therefore, no component name inside a
map_dcl may appear in any other map_dcl on the same level.

A component declared within a map declaration must not have a POINTER or
ALLOCATABLE attribute.

A record structure with union map must not appear in I/O statements.

The components declared in a map declaration share the same storage as the
components declared in the other map declarations within a union construct.

Data Types and Data Objects 49

IBM Extension

When you assign a value to one component in one map declaration, the
components in other map declarations that share storage with this component may
be affected.

The size of a map is the sum of the sizes of the components declared within it.

The size of the data area established for a union declaration is the size of the
largest map defined for that union

A parameter_stmt in a map declaration or union construct declares entities in the
scoping unit of the nearest enclosing program unit, interface body, or subprogram.

A %FILL field in a map declaration is used as a place-holder to achieve desired
alignment of data in a record structure. Other non-filler components or part of the
components in other map declarations that share the data area with a %FILL field
are undefined.

If default initialization is specified in component_def stmts in at least one map
declaration in a union declaration, the last occurence of the initialization becomes
the final initialization of the components.

If default initialization is specified in one of the union map declarations in a record
structure, a variable of that type that will have its storage class assigned by default
will be given

* the static storage class if either the -qsave=defaultinit or -qsave=all option is
specified; or

* the automatic storage class, if the -qnosave option is specified.

At any time, only one map is associated with the shared storage. If a component
from another map is referenced, the associated map becomes unassociated and its
components become undefined. The map referenced will then be associated with
the storage.

If a component of map_dcl is entirely or partially mapped with the %FILL
component of the other map_dcl in a union, the value of the overlap portion is
undefined unless that component is initialized by default initialization or an
assignment statement.

Examples of Union and Map
Example 1: The size of the union is equal to the size of the largest map in that
union

structure /S/
union
map
integer+x4 i, j, k
real*8 r, s, t
end map
map
integerx4 p, q
real*4 u, v
end map
end union I Size of the union is 36 bytes.
end structure
record /S/ r

Example 2: The results of union map are different with different -qsave option
and suboptions

50 XL Fortran Advanced Edition for Mac OS X: Language Reference

IBM Extension

PROGRAM P
CALL SuB
CALL SuB

END PROGRAM P

SUBROUTINE SUB
LOGICAL, SAVE :: FIRST_TIME = .TRUE.
STRUCTURE /S/

UNION
MAP
INTEGER 1/17/
END MAP
MAP
INTEGER J
END MAP
END UNION
END STRUCTURE
RECORD /S/ LOCAL_STRUCT
INTEGER LOCAL_VAR

IF (FIRST_TIME) THEN
LOCAL_STRUCT.J = 13
LOCAL_VAR = 19
FIRST _TIME = .FALSE.

ELSE
! Prints " 13" if compiled with -gsave or -gsave=all
! Prints " 13" if compiled with -gsave=defaultinit
I Prints " 17" if compiled with -gnosave
PRINT %, LOCAL_STRUCT%j
! Prints " 19" if compiled with -gsave or -gsave=all
! Value of LOCAL_VAR is undefined otherwise
PRINT %, LOCAL_VAR

END IF

END SUBROUTINE SUB

Example 3: The last occurrence of default initialization in a map declaration
within a union structure becomes the final initialization of the component

structure /st/
union
map
integer i /3/, j /4/
union
map
integer k /8/, 1 /9/
end map
end union
end map
map
integer a, b
union
map
integer c¢ /21/
end map
end union
end map
end union
end structure
record /st/ R
print *, R.1,
print *, R.a,
end

k, R.1 ! Prints "3 4 21 9"
C

.J, R.
.b, R. ! Prints "3 4 21"

Example 4: The following program is compiled with -qintsize=4 and
-qalign=struct=packed, the components in the union MAP are aligned and
packed

Data Types and Data Objects

51

IBM Extension

structure /s/
union
map
integer*2 i /z'lala'/, %FILL, j /z'2b2b'/
end map
map
integer m, n
end map
end union
end structure
record /s/ r

Prints "1A1A 2B2B"

Prints "1A1A0000 2B2B0000" however
the two bytes in the lower order are
not guaranteed.

Components are initialized by
assignment statements.

print '(2z6.4)', r.i, r.j
print '(2z10.8)', r.m, r.n

r.m = z'abc00cbha'

r.n = z'02344320'

print '(2z10.8)', r.m, r.n ! Prints "ABCOOCBA 02344320"
print '(2z6.4)"', r.i, r.j ! Prints "ABCO 0234"

end

| End of IBM Extension

Typeless Literal Constants

| IBM Extension

A typeless constant does not have an intrinsic type in XL Fortran. Hexadecimal,
octal, binary, and Hollerith constants can be used in any situation where intrinsic
literal constants are used, except as the length specification in a type declaration
statement (although typeless constants can be used in a type_param_value in

[CHARACTER type declaration| statements). The number of digits recognized in a

hexadecimal, octal, or binary constant depends on the context in which the
constant is used.

Hexadecimal Constants

The form of a hexadecimal constant is:

"

X "—hexadecimal number—' >
Zj_[” —hexadecimal_number—

' —hexadecimal_number— X:I—
"—hexadecimal_number—"]_EZ

Z—hexadecimal_number

A

hexadecimal_number
is a string composed of digits (0-9) and letters (A-F, a-f).
Corresponding uppercase and lowercase letters are equivalent.

The Znn...nn form of a hexadecimal constant can only be used as a data
initialization value delimited by slashes. If this form of a hexadecimal constant is
the same string as the name of a constant you defined previously with the
|EARAMETER. attribute, XL Fortran recognizes the string as the named constant.

52 XL Fortran Advanced Edition for Mac OS X: Language Reference

IBM Extension

If 2x hexadecimal digits are present, x bytes are represented.

See ["Using Typeless Constants” on page 54| for information on how XL Fortran
interprets the constant.

Examples of Hexadecimal Constants

7'0123456789ABCDEF"
Z"FEDCBA9876543210
7'0123456789aBcDeF"
70123456789aBcDeF ! This form can only be used as an initialization value

Octal Constants
The form of an octal constant is:

»>>- O—[’ —octal _number—' <
”—octal_number—”—|
" —octal number—']—O
"—octal_number—"

octal_number
is a string composed of digits (0-7)

Because an octal digit represents 3 bits, and a data object represents a multiple of 8
bits, the octal constant may contain more bits than are needed by the data object.
For example, an INTEGER(2) data object can be represented by a 6-digit octal
constant if the leftmost digit is 0 or 1; an INTEGER(4) data object can be
represented by an 11-digit constant if the leftmost digit is 0, 1, 2, or 3; an
INTEGER(8) can be represented by a 22-digit constant if the leftmost digit is 0 or
1.

See ["Using Typeless Constants” on page 54| for information on how the constant is
interpreted by XL Fortran.

Examples of Octal Constants

0'01234567"
"01234567"0

Binary Constants

The form of a binary constant is:

> B—[’ —binary_number—' ><
"—binary _number—"
'—binary_number—]—B—
"—binary_number—"

binary_number is a string formed from the digits 0 and 1

If 8x binary digits are present, x bytes are represented.

See [“Using Typeless Constants” on page 54| for information on how XL Fortran
interprets the constant.

Data Types and Data Objects 53

IBM Extension

Examples of Binary Constants

B"10101010"
'10101010'B

Hollerith Constants
The form of a Hollerith constant is:

v
A

»»—n—H—character_string

A Hollerith constant consists of a nonempty string of characters capable of
representation in the processor and preceded by nH, where n is a positive unsigned
integer constant representing the number of characters after the H. n cannot specify
a kind type parameter. The number of characters in the string may be from 1 to
255.

Note: If you specify nH and fewer than n characters are specified after the n, any
blanks that are used to extend the input line to the right margin are
considered to be part of the Hollerith constant. A Hollerith constant can be
continued on a continuation line. At least n characters must be available for
the Hollerith constant.

XL Fortran also recognizes escape sequences in Hollerith constants, unless the
-qnoescape compiler option is specified. If a Hollerith constant contains an escape
sequence, n is the number of characters in the internal representation of the string,
not the number of characters in the source string. (For example, 2H\"\" represents
a Hollerith constant for two double quotation marks.)

XL Fortran provides support for multibyte characters within character constants,
Hollerith constants, H edit descriptors, character-string edit descriptors, and
comments. This support is provided through the -qmbcs option. Assignment of a
constant containing multibyte characters to a variable that is not large enough to
hold the entire string may result in truncation within a multibyte character.

Support is also provided for Unicode characters and filenames. If the environment
variable LANG is set to UNIVERSAL and the -qmbcs compiler option is specified,
the compiler can read and write Unicode characters and filenames.

See [“Using Typeless Constants”| for information on how the constant is interpreted
by XL Fortran.

Using Typeless Constants

The data type and length of a typeless constant are determined by the context in
which you use the typeless constant. XL Fortran does not convert the data type
and length until you use them and context is understood.

* If you compile your program with the -qctyplss compiler option, character
initialization expressions follow the rules that apply to Hollerith constants.

* A typeless constant can assume only one of the intrinsic data types.

* When you use a typeless constant with an arithmetic or logical unary operator,
the constant assumes a default integer type.

* When you use a typeless constant with an arithmetic, logical, or relational binary
operator, the constant assumes the same data type as the other operand. If both

54 XL Fortran Advanced Edition for Mac OS X: Language Reference

IBM Extension

operands are typeless constants, they assume a type of default integer unless
both operands of a relational operator are Hollerith constants. In this case, they
both assume a character data type.

When you use a typeless constant in a concatenation operation, the constant
assumes a character data type.

When you use a typeless constant as the expression on the right-hand side of an
assignment statement, the constant assumes the type of the variable on the
left-hand side.

When you use a typeless constant in a context that requires a specific data type,
the constant assumes that data type.

When you use a typeless constant as an initial value in a DATA statement,

STATIC statement, or type declaration statement, or as the constant value of a

named constant in a PARAMETER statement, or when the typeless constant is

to be treated as any noncharacter type of data, the following rules apply:

— If a hexadecimal, octal, or binary constant is smaller than the length expected,
XL Fortran adds zeros on the left. If it is longer, the compiler truncates on the
left.

— If a Hollerith constant is smaller than the length expected, the compiler adds
blanks on the right. If it is longer, the compiler truncates on the right.

— If a typeless constant specifies the value of a named constant with a character
data type having inherited length, the named constant has a length equal to
the number of bytes specified by the typeless constant.

When a typeless constant is treated as an object of type character (except when
used as an initial value in a DATA, STATIC, type declaration, or component
definition statement).

When you use a typeless constant as part of a complex constant, the constant
assumes the data type of the other part of the complex constant. If both parts are
typeless constants, the constants assume the real data type with length sufficient
to represent both typeless constants.

When you use a typeless constant as an actual argument, the type of the
corresponding dummy argument must be an intrinsic data type. The dummy
argument must not be a procedure, pointer, array, object of derived type, or
alternate return specifier.

When you use a typeless constant as an actual argument, and:

— The procedure reference is to a generic intrinsic procedure,

— All of the arguments are typeless constants, and

— There is a specific intrinsic procedure that has the same name as the generic
procedure name,

the reference to the generic name will be resolved through the specific

procedure.

When you use a typeless constant as an actual argument, and:

— The procedure reference is to a generic intrinsic procedure,

— All of the arguments are typeless constants, and

— There is no specific intrinsic procedure that has the same name as the generic
procedure name,

the typeless constant is converted to default integer. If a specific intrinsic
function takes integer arguments, the reference is resolved through that specific
function. If there are no specific intrinsic functions, the reference is resolved
through the generic function.

When you use a typeless constant as an actual argument, and:

Data Types and Data Objects 55

IBM Extension

— The procedure reference is to a generic intrinsic procedure, and
— There is another argument specified that is not a typeless constant,

the typeless constant assumes the type of that argument. However, if you specify
the compiler option -qport=typlssarg, the actual argument is converted to
default integer. The selected specific intrinsic procedure is based on that type.

* When you use a typeless constant as an actual argument, and the procedure
name is established to be generic but is not an intrinsic procedure, the generic
procedure reference must resolve to only one specific procedure. The constant
assumes the data type of the corresponding dummy argument of that specific
procedure. For example:

INTERFACE SUB
SUBROUTINE SUB1(A)
REAL A
END SUBROUTINE
SUBROUTINE SUB2(A, B)
REAL A, B
END SUBROUTINE
SUBROUTINE SUB3(I)
INTEGER I
END SUBROUTINE
END INTERFACE
CALL SUB('C0600000'X, '40066666'X) ! Resolves to SUB2

CALL SUB('00000000'X) ! Invalid - ambiguous, may
! resolve to either SUBL or SUB3
* When you use a typeless constant as an actual argument, and the procedure
name is established to be only specific, the constant assumes the data type of the
corresponding dummy argument.

* When you use a typeless constant as an actual argument, and:

— The procedure name has not been established to be either generic or specific,
and

— The constant has been passed by reference,

the constant assumes the default integer size but no data type, unless it is a
Hollerith constant. The default for passing a Hollerith constant is the same as if
it were a character actual argument. However, using the compiler option
-qctyplss=arg will cause a Hollerith constant to be passed as if it were an integer
actual argument. See |“Resolution of Procedure References” on page 164 for more
information about establishing a procedure name to be generic or specific.

* When you use a typeless constant as an actual argument, and:

— The procedure name has not been established to be either generic or specific,
and

— The constant has been passed by value,

the constant is passed as if it were a default integer for hexadecimal, binary, and
octal constants.

If the constant is a Hollerith constant and it is smaller than the size of a default
integer, XL Fortran adds blanks on the right. If the constant is a Hollerith
constant and it is larger than 8 bytes, XL Fortran truncates the rightmost
Hollerith characters. See [“Resolution of Procedure References” on page 164|for
more information about establishing a procedure name to be generic or specific.

* When you use a typeless constant in any other context, the constant assumes the
default integer type, with the exception of Hollerith constants. Hollerith
constants assume a character data type when used in the following situations:

— An H edit descriptor

56 XL Fortran Advanced Edition for Mac OS X: Language Reference

IBM Extension

— A relational operation with both operands being Hollerith constants
- An input/output list

* If a typeless constant is to be treated as a default integer but the value cannot be
represented within the value range for a default integer, the constant is
promoted to a representable kind.

e A kind type parameter must not be replaced with a logical constant even if
-qintlog is on, nor by a character constant even if -qctyplss is on, nor can it be a
typeless constant.

Examples of Typeless Constants in Expressions

INT=B'1"' I Binary constant is default integer
RL4=X"1" I Hexadecimal constant is default real
INT=INT + O'1" I Octal constant is default integer
RL4=INT + B'1" I Binary constant is default integer
INT=RL4 + Z'1' | Hexadecimal constant is default real
ARRAY(0'1')=1.0 ! Octal constant is default integer

LOGICAL(8) LOG8
L0G8=B'1' ! Binary constant is LOGICAL(8), LOG8 is .TRUE.

| End of IBM Extension

How Type Is Determined

Each user-defined function or named entity has a data type. The type of an entity
accessed by host or use association is determined in the host scoping unit or
accessed module, respectively. The type of a name is determined, in the following
sequence, in one of three ways:

1. Explicitly, in one of the following ways:

« From a specified type declaration statement (see [“Type Declaration” on page
for details).

* For function results, from a specified type statement or its FUNCTION
statement.

2. Implicitly, from a specified IMPLICIT type statement (see ['IMPLICIT” on page]
for details).

3. Implicitly, by predefined convention. By default (that is, in the absence of an
IMPLICIT type statement), if the first letter of the name is I, J, K, L, M, or N, the
type is default integer. Otherwise, the type is default real.

In a given scoping unit, if a letter, dollar sign, or underscore has not been specified
in an IMPLICIT statement, the implicit type used is the same as the implicit type

used by the host scoping unit. A program unit and interface body are treated as if
they had a host with an IMPLICIT] statement listing the predefined conventions.

The data type of a literal constant is determined by its form.

Definition Status of Variables

A variable is defined or undefined, and its definition status can change during
program execution. A named constant has a value and cannot be defined or
redefined during program execution.

Data Types and Data Objects 57

Arrays (including sections), structures, and variables of character or complex type
are objects made up of zero or more subobjects. Associations can be established
between variables and subobjects and between subobjects of different variables.

* An object is defined if all of its subobjects are defined. That is, each object or
subobject has a value that does not change until it becomes undefined or until it
is redefined with a different value.

* If an object is undefined, at least one of its subobjects is undefined. An
undefined object or subobject cannot provide a predictable value.

Variables are initially defined if they are specified to have initial values by DATA
statements, type declaration statements, or STATIC statements. In addition, default
initialization may cause a variable to be initially defined. Zero-sized arrays and
zero-length character objects are always defined.

All other variables are initially undefined.

Events Causing Definition
The following events will cause a variable to become defined:
1. Execution of an intrinsic assignment statement other than a masked array

assignment statement or FORALL assignment statement
causes the variable that precedes the equal sign to become defined.
Execution of a defined assignment statement may cause all or part of the
variable that precedes the equal sign to become defined.

2. Execution of a masked array assignment statement or FORALL
assignment statement may cause some or all of the array elements in
the assignment statement to become defined.

3. As execution of an input statement proceeds, each variable that is assigned a
value from the input file becomes defined at the time that data are transferred
to it. Execution of a WRITE statement whose unit specifier identifies an
internal file causes each record that is written to become defined.

4. Execution of a DO statement causes the DO variable, if any, to become
defined.

| Fortran 95

5. Default initialization may cause a variable to be initially defined.

| End of Fortran 95

6. Beginning of execution of the action specified by an implied-DO list in an
input/output statement causes the implied-DO variable to become defined.

7. Execution of an ASSIGN statement causes the variable in the statement to
become defined with a statement label value.

8. A reference to a procedure causes the entire dummy argument data object to
become defined if the dummy argument does not have INTENT(OUT), and
the entire corresponding actual argument is defined with a value that is not a
statement label.

A reference to a procedure causes a subobject of a dummy argument that does
not have INTENT(OUT) to become defined if the corresponding subobject of
the corresponding actual argument is defined.

9. Execution of an input/output statement containing an IOSTAT= specifier
causes the specified integer variable to become defined.

58 XL Fortran Advanced Edition for Mac OS X: Language Reference

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

Execution of a READ statement containing a SIZE= specifier causes the
specified integer variable to become defined.

Execution of an INQUIRE statement causes any variable that is assigned a
value during the execution of the statement to become defined if no error
condition exists.

When a character storage unit becomes defined, all associated character
storage units become defined.

When a numeric storage unit becomes defined, all associated numeric storage
units of the same type become defined, except that variables associated with
the variable in an ASSIGN statement become undefined when the ASSIGN
statement is executed. When an entity of type DOUBLE PRECISION becomes
defined, all totally associated entities of double precision real type become
defined.

A nonpointer scalar object of type nondefault integer, real other than default
or double precision, nondefault logical, nondefault complex, nondefault
character of any length, or nonsequence type occupies a single unspecified
storage unit that is different for each case. A pointer that is distinct from other
pointers in at least one of type, kind, and rank occupies a single unspecified
storage unit. When an unspecified storage unit becomes defined, all associated
unspecified storage units become defined.

When a default complex entity becomes defined, all partially associated
default real entities become defined.

When both parts of a default complex entity become defined as a result of
partially associated default real or default complex entities becoming defined,
the default complex entity becomes defined.

When all components of a numeric sequence structure or character sequence
structure become defined as a result of partially associated objects becoming
defined, the structure becomes defined.

Execution of an ALLOCATE or DEALLOCATE statement with a STAT=
specifier causes the variable specified by the STAT= specifier to become
defined.

Allocation of a zero-sized array causes the array to become defined.

Invocation of a procedure causes any automatic object of zero size in that
procedure to become defined.

Execution of a pointer assignment statement that associates a pointer with a
target that is defined causes the pointer to become defined.

Invocation of a procedure that contains a nonpointer, nonallocatable,
automatic object, causes all nonpointer default-initialized subcomponents of
the object to become defined.

Invocation of a procedure that contains a nonpointer nonallocatable
INTENT(OUT) dummy argument causes all nonpointer default-initialized
subcomponents of the object to become defined.

Allocation of an object of a derived type where a nonpointer component is

initialized by default initialization, causes the component and its subobjects to
become defined.

23.

Fortran 95 |

In a FORALL statement or construct used in Fortran 95, the index-name
becomes defined when the index-name value set is evaluated.

End of Fortran 95 |

Data Types and Data Objects 59

Events Causing Undefinition

The following events will cause a variable to become undefined:

1. When a variable of a given type becomes defined, all associated variables of
different type become undefined. However, when a variable of type default
real is partially associated with a variable of type default complex, the
complex variable does not become undefined when the real variable becomes
defined and the real variable does not become undefined when the complex
variable becomes defined. When a variable of type default complex is partially
associated with another variable of type default complex, definition of one
does not cause the other to become undefined.

2. Execution of an ASSIGN statement causes the variable in the statement to
become undefined as an integer. Variables that are associated with the variable
also become undefined.

3. If the evaluation of a function may cause an argument of the function or a
variable in a module or in a common block to become defined, and if a
reference to the function appears in an expression in which the value of the
function is not needed to determine the value of the expression, the argument
or variable becomes undefined when the expression is evaluated.

4. The execution of a RETURN statement or END statement within a
subprogram causes all variables that are local to its scoping unit, or that are
local to the current instance of its scoping unit for a recursive invocation, to
become undefined, except for the following:

a. Variables with the SAVE or STATIC attribute.
b. Variables in blank common.

€. According to Fortran 90, variables in a named common block that appears
in the subprogram and appears in at least one other scoping unit that is
making either a direct or indirect reference to the subprogram. XL
Fortran does not undefine these variables.

Variables accessed from the host scoping unit.

According to Fortran 90, variables accessed from a module that also is
referenced directly or indirectly by at least one other scoping unit that is
making either a direct or indirect reference to the subprogram. XL
Fortran does not undefine these variables.

f. According to Fortran 90, variables in a named common block that are
initially defined and that have not been subsequently defined or redefined.

XL Fortran does not undefine these variables[1em 4

5. When an error condition or end-of-file condition occurs during execution of
an input statement, all of the variables specified by the input list or
namelist-group of the statement become undefined.

6. When an error condition, end-of-file condition, or end-of-record condition
occurs during execution of an input/output statement and the statement
contains any implied-DO lists, all of the implied-DO variables in the
statement become undefined.

7. Execution of a defined assignment statement may leave all or part of the
variable that precedes the equal sign undefined.

8. Execution of a direct access input statement that specifies a record that has not
been written previously causes all of the variables specified by the input list
of the statement to become undefined.

9. Execution of an INQUIRE statement may cause the NAME=, RECL=, and
NEXTREC= variables to become undefined.

60 XL Fortran Advanced Edition for Mac OS X: Language Reference

10.

11.

12.

13.

14.

15.

When a character storage unit becomes undefined, all associated character
storage units become undefined.

When a numeric storage unit becomes undefined, all associated numeric
storage units become undefined unless the undefinition is a result of defining
an associated numeric storage unit of different type (see (1) above).

When an entity of double precision real type becomes undefined, all totally
associated entities of double precision real type become undefined.

When an unspecified storage unit becomes undefined, all associated
unspecified storage units become undefined.

A reference to a procedure causes part of a dummy argument to become
undefined if the corresponding part of the actual argument is defined with a
value that is a statement label value.

When an allocatable entity is deallocated, it becomes undefined. Successful
execution of an ALLOCATE statement for a nonzero-sized object for which
default initialization has not been specified causes the object to become
undefined.

Execution of an INQUIRE statement causes all inquiry specifier variables to
become undefined if an error condition exists, except for the variable in the
IOSTAT= specifier, if any.

When a procedure is invoked:

a. An optional dummy argument that is not associated with an actual
argument is undefined.

b. A nonpointer dummy argument with INTENT(OUT) and its associated
actual argument are undefined, except for nonpointer direct components
that have default initialization.

C. A pointer dummy argument with INTENT(OUT) and its associated actual
argument have an association status of undefined.

d. A subobject of a dummy argument is undefined if the corresponding
subobject of the actual argument is undefined.

e. The function result variable is undefined, unless it was declared with the
STATIC attribute and was defined in a previous invocation.

When the association status of a pointer becomes undefined or disassociated,
the pointer becomes undefined.

16.

Fortran 95 |

When the execution of a FORALL statement or construct in Fortran 95 has
completed, the index-name becomes undefined.

End of Fortran 95 |

17.

IBM Extension |

When a variable is specified in the NEW clause of an INDEPENDENT
directive, the variable is undefined at the beginning of every iteration of the
following DO loop.

End of IBM Extension |

Allocation Status

The allocation status of an allocatable object is one of the following during
program execution:

Data Types and Data Objects 61

* Not currently allocated, which means that the object has never been allocated or
that the last operation on it was a deallocation.

* Currently allocated, which means that the object has been allocated by an
ALLOCATE statement and has not been subsequently deallocated.

* Undefined, which means that the object does not have the SAVE or STATIC
attribute and was currently allocated when execution of a RETURN or END
statement resulted in no executing scoping units having access to it.

| IBM Extension |

In XL Fortran, this status is only available when you are using the
-qx1f90=noautodealloc option. (For example, you are using the x1f90 compilation
command.)

| End of IBM Extension |

If the allocation status of an allocatable object is currently allocated, the object may
be referenced and defined. An allocatable object that is not currently allocated must
not be referenced or defined. If the allocation status of an allocatable object is
undefined, the object must not be referenced, defined, allocated, or deallocated.

When the allocation status of an allocatable object changes, the allocation status of
any associated allocatable object changes accordingly.

| IBM Extension |

In XL Fortran, the allocation status of such an object remains currently allocated.

| End of IBM Extension |

| Fortran 95 |

In Fortran 95, the allocation status of an allocatable object that is declared in the
scope of a module is processor dependent if it does not have the SAVE attribute
and was currently allocated when execution of a RETURN or END statement
resulted in no executing scoping units referencing the module.

| End of Fortran 95 |

Storage Classes for Variables

| IBM Extension |

Note: This section pertains only to storage for variables. Named constants and
their subobjects have a storage class of literal.

Fundamental Storage Classes

All variables are ultimately represented by one of five storage classes:

Automatic for variables in a procedure that will not be retained once the
procedure ends. Variables reside in the stack storage area.

Static for variables that retain memory throughout the program. Variables
reside in the data storage area. Uninitialized variables reside in the
bss storage area.

62 XL Fortran Advanced Edition for Mac OS X: Language Reference

Storage Classes for Variables - IBM Extension

Common for common block variables. If a common block variable is
initialized, the whole block resides in the data storage area;
otherwise, the whole block resides in the bss storage area.

Controlled Automatic
for automatic objects. Variables reside in the stack storage area. XL
Fortran allocates storage on entry to the procedure and deallocates
the storage when the procedure completes.

Controlled for allocatable objects. Variables reside in the heap storage area.
You must explicitly allocate and deallocate the storage.

Secondary Storage Classes

None of the following storage classes own their own storage, but are associated
with a fundamental storage class at run time.

Pointee is dependent on the value of the corresponding integer pointer.

Reference parameter
is a dummy argument whose actual argument is passed to a
procedure using the default passing method or %REF.

Value parameter
is a dummy argument whose actual argument is passed by value
to a procedure.

For details on passing methods, see [“%VAL and %REF” on page 157

Storage Class Assignment
Variable names are assigned storage classes in one of the following ways:
1. Explicitly:
* Dummy arguments have an explicit storage class of reference parameter or
value parameter. See ["%VAL and %REF” on page 157 for more details.

* Pointee variables have an explicit storage class of pointee.

* Variables for which the STATIC attribute is explicitly specified have an
explicit storage class of static.

* Variables for which the AUTOMATIC attribute is explicitly specified have an
explicit storage class of automatic.

* Variables that appear in a COMMON block have an explicit storage class of
common.

* Variables for which the SAVE attribute is explicitly specified have an explicit
storage class of static, unless they also appear in a COMMON statement, in
which case their storage class is common.

* Variables that appear in a DATA statement or are initialized in a type
declaration statement have an explicit storage class of static, unless they also
appear in a COMMON statement, in which case their storage class is
common.

* Function result variables that are of type character or derived have the
explicit storage class of reference parameter.

 Function result variables that do not have the SAVE or STATIC attribute
have an explicit storage class of automatic.

* Automatic objects have an explicit storage class of controlled automatic.
* Allocatable objects have an explicit storage class of controlled.

Data Types and Data Objects 63

Storage Classes for Variables - IBM Extension

A variable that does not satisfy any of the above, but that is equivalenced with
a variable that has an explicit storage class, inherits that explicit storage class.

A variable that does not satisfy any of the above, and is not equivalenced with
a variable that has an explicit storage class, has an explicit storage class of static
if:
* A SAVE statement with no list exists in the scoping unit or,
¢ The variable is declared in the specification part of a main program.

2. Implicitly:
If a variable does not have an explicit storage class, it can be assigned an
implicit storage class as follows:

* Variables whose names begin with a letter, dollar sign or underscore that
appears in an IMPLICIT STATIC statement have a storage class of static.

* Variables whose names begin with a letter, dollar sign or underscore that
appears in an IMPLICIT AUTOMATIC statement have a storage class of
automatic.

In a given scoping unit, if a letter, dollar sign or underscore has not been
specified in an IMPLICIT STATIC or IMPLICIT AUTOMATIC statement, the
implicit storage class is the same as that in the host.

Variables declared in the specification part of a module are associated with the
static storage class.

A variable that does not satisfy any of the above but that is equivalenced with
a variable that has an implicit storage class, inherits that implicit storage class.

3. Default:

All other variables have the default storage class:

* Static, if you specified the -qsave=all compiler option.

e Static, for variables of derived type that have default initialization specified,
and automatic otherwise if you specify the —qsave=defaultinit compiler
option.

¢ Automatic, if you specified the -qnosave compiler option. This is the default
setting.

See [-gsave Option|in the [User’s Guide| for details on the default settings with
regard to the invocation commands.

| End of IBM Extension |

64 XL Fortran Advanced Edition for Mac OS X: Language Reference

Array Concepts

Fortran 90 and Fortran 95 provide a set of features, commonly referred to as array
language, that let programmers manipulate arrays. This section provides
background information on arrays and array language:

. ”Arrays”l

* [“Array Declarators” on page 67]

» [“Explicit-Shape Arrays” on page 68|

* |“Assumed-Shape Arrays” on page 69
* |“Deferred-Shape Arrays” on pa&ﬂ)l
* [“Assumed-Size Arrays” on pagm

* [“Array Elements” on paw

* |“Array Sections” on pagm

* [“Array Constructors” on page 81|

+ |“Expressions Involving Arrays” on page 83|

Related Information:

* Many statements in [“Statements and Attributes” on page 223 |have special
features and rules for arrays.

» This section makes frequent use of the DIMENSION statement. See
[“DIMENSION” on page 262

* A number of intrinsic functions are especially for arrays. These functions are
mainly those classified as [“Transformational Intrinsic Functions” on page 422

Arrays

An array is an ordered sequence of scalar data. All the elements of an array have
the same type and type parameters.

A whole array is denoted by the name of the array:

I In this declaration, the array is given a type and

dimension

REAL, DIMENSION(3) :: A

I In these expressions, each element is evaluated in each expression
PRINT *, A, A+5, COS(A)

A whole array is either a named constant or a variable.

Bounds of a Dimension

Each dimension in an array has an upper and lower bound, which determine the
range of values that can be used as subscripts for that dimension. The bound of a
dimension can be positive, negative, or zero.

| IBM Extension |

In XL Fortran, the bound of a dimension can be positive, negative or zero within
the range -(2**31) to 2**31-1.

| End of IBM Extension |

© Copyright IBM Corp. 1990, 2003 65

If any lower bound is greater than the corresponding upper bound, the array is a
zero-sized array, which has no elements but still has the properties of an array. The
lower and upper bounds of such a dimension are one and zero, respectively.

When the bounds are specified in array declarators:

* The lower bound is a specification expression. If it is omitted, the default value
is 1.

¢ The upper bound is a specification expression or asterisk (*), and has no default
value.

Related Information:

» |“Specification Expressions” on page 8§
* ['LBOUND(ARRAY, DIM)” on page 476|
“UBOUND(ARRAY, DIM)” on page 536|

Extent of a Dimension

The extent of a dimension is the number of elements in that dimension, computed
as the value of the upper bound minus the value of the lower bound, plus one.

INTEGER, DIMENSION(5) :: X ! Extent = 5
REAL :: Y(2:4,3:6) ! Extent in 1st dimension = 3
! Extent in 2nd dimension = 4

The minimum extent is zero, in a dimension where the lower bound is greater than
the upper bound.

| IBM Extension |

The theoretical maximum number of elments in an array is 2**31-1. Hardware
addressing considerations make it impractical to declare any combination of data
objects whose total size (in bytes) exceeds this value.

| End of IBM Extension |

Different array declarators that are associated by common, equivalence, or
argument association can have different ranks and extents.

Rank, Shape, and Size of an Array
The rank of an array is the number of dimensions it has:

INTEGER, DIMENSION (10) :: A ! Rank =1
REAL, DIMENSION (-5:5,100) :: B ! Rank = 2

According to Fortran 95, an array can have from one to seven dimensions.

| IBM Extension |

An array can have from one to twenty dimensions in XL Fortran.

| End of IBM Extension |

A scalar is considered to have rank zero.

The shape of an array is derived from its rank and extents. It can be represented as
a rank-one array where each element is the extent of the corresponding dimension:

66 XL Fortran Advanced Edition for Mac OS X: Language Reference

INTEGER, DIMENSION (10,10) ::
A ! Shape = (/ 10, 10 /)
REAL, DIMENSION (-5:4,1:10,10:19) :: B ! Shape = (/ 10, 10, 10 /)

The size of an array is the number of elements in it, equal to the product of the
extents of all dimensions:

INTEGER A(5)

! Size =5

REAL B(-1:0,1:3,4) ! Size =23 x4 =24

Related Information

* These examples show only simple arrays where all bounds are constants. For
instructions on calculating the values of these properties for more complicated
kinds of arrays, see the following sections.

* Related intrinsic functions are [“SHAPE(SOURCE)” on page 519)and
|”SIZE(ARRAY, DIM)” on page 523 The rank of an array A is SIZE(SHAPE(A)).

Array Declarators

An array declarator declares the shape of an array.

You must declare every named array, and no scoping unit can have more than one
array declarator for the same name. An array declarator can appear in the
following statements: COMMON, integer POINTER, STATIC, AUTOMATIC,
DIMENSION, ALLOCATABLE, POINTER, TARGET and type declaration.

For example:

DIMENSION :: A(1:5) ! Declarator is "(1:5)"
REAL, DIMENSION(1,1:5) :: B ! Declarator is "(1,1:5)"
INTEGER C(10) I Declarator is "(10)"

Pointers can be scalars, assumed-shape arrays or explicit-shape arrays.

The form of an array declarator is:

A\
A

»>—(—array_spec—)

array_spec is an array specification. It is a list of dimension declarators, each
of which establishes the lower and upper bounds of an array, or
specifies that one or both will be set at run time. Each dimension
requires one dimension declarator.

| IBM Extension |

An array can have from one to twenty dimensions in XL Fortran.

| End of IBM Extension |

An array_spec is one of:
explicit_shape_spec_list
assumed_shape_spec_list
deferred_shape_spec_list
assumed_size_spec

Array Concepts 67

Each array_spec declares a different kind of array, as explained in
the following sections.

Explicit-Shape Arrays

Explicit-shape arrays are arrays where the bounds are explicitly specified for each
dimension.

— Explicit_shape_spec_list

r

|—lower_bound—:—|

4
4

upper_bound ><

lower_bound, upper_bound
are specification expressions

If any bound is not constant, the array must be declared inside a subprogram. The
nonconstant bounds are determined on entry to the subprogram. If a lower bound
is omitted, its default value is one.

The rank is the number of specified upper bounds. The shape of an explicit-shape
dummy argument can differ from that of the corresponding actual argument.

The size is determined by the specified bounds.

Examples of Explicit-Shape Arrays

INTEGER A,B,C(1:10,-5:5) ! A11 bounds are constant
A=8; B=3
CALL SUB1(A,B,C)
END
SUBROUTINE SUB1(X,Y,Z)

INTEGER X,Y,Z(X,Y) ! Some bounds are not constant
END SUBROUTINE

Automatic Arrays

An automatic array is an explicit-shape array that is declared in a subprogram, is
not a dummy argument or pointee array, and has at least one bound that is a
nonconstant specification expression.. The bounds are evaluated on entry to the
subprogram and remain unchanged during execution of the subprogram.

INTEGER X
COMMON X

X =10

CALL SUB1(5)
END

SUBROUTINE SUB1(Y)

INTEGER X

COMMON X

INTEGER Y

REAL Z (X:20, 1:Y) Automatic array. Here the bounds are made
available through dummy arguments and common
blocks, although Z itself is not a dummy
argument.

END SUBROUTINE

68 XL Fortran Advanced Edition for Mac OS X: Language Reference

Related Information

* For general information about automatic data objects, see |’ Automatic Objects”|
[on page 22|and |Storage Classes for Variables” on page 62.]

Adjustable Arrays

An adjustable array is an explicit-shape array that is declared in a subprogram and
has at least one bound that is a nonconstant specification expression. An adjustable
array must be a dummy argument.

SUBROUTINE SUBL(X, Y)

INTEGER X, Y(X*3) ! Adjustable array. Here the bounds depend on a

! dummy argument, and the array name is also passed in.
END SUBROUTINE

Pointee Arrays

| IBM Extension

Pointee arrays are explicit-shape or assumed-size arrays that are declared in integer
POINTER statements or other specification statements.

The declarator for a pointee array may only contain variables if the array is
declared inside a subprogram, and any such variables must be dummy arguments,
members of a common block, or use or host associated. The sizes of the
dimensions are evaluated upon entry to the subprogram and remain constant
during execution of the subprogram.

With the compiler option, as explained in the in the the

restrictions on which variables may appear in the array declarator are lifted,
declarators in the main program may contain variable names, and any specified
nonconstant bounds are re-evaluated each time the array is referenced, so that you
can change the properties of the pointee array by simply changing the values of
the variables used in the bounds expressions:

@PROCESS DDIM

INTEGER PTE, N, ARRAY(10)
POINTER (P, PTE(N))

N=25

P = LOC(ARRAY(2)) !

PRINT *, PTE I Print elements 2 through 6 of ARRAY
N=7 I Increase the size

PRINT *, PTE I Print elements 2 through 8 of ARRAY
END

Related Information:
[‘POINTER (integer)” on page 342

| End of IBM Extension

Assumed-Shape Arrays

Assumed-shape arrays are dummy argument arrays where the extent of each
dimension is taken from the associated actual arguments. Because the names of
assumed-shape arrays are dummy arguments, they must be declared inside
subprograms.

Array Concepts 69

— Assumed_shape_spec_list

-

v
I—lower_bound—l

>

lower_bound
is a specification expression

Each lower bound defaults to one, or may be explicitly specified. Each upper
bound is set on entry to the subprogram to the specified lower bound (not the
lower bound of the actual argument array) plus the extent of the dimension minus
one.

The extent of any dimension is the extent of the corresponding dimension of the
associated actual argument.

The rank is the number of colons in the assumed_shape_spec_list.
The shape is assumed from the associated actual argument array.

The size is determined on entry to the subprogram where it is declared, and equals
the size of the associated argument array.

Note: Subprograms that have assumed-shape arrays as dummy arguments must
have explicit interfaces.

Examples of Assumed-Shape Arrays

INTERFACE

SUBROUTINE SUB1(B)

INTEGER B(1:,:,10:)

END SUBROUTINE
END INTERFACE
INTEGER A(10,11:20,30)
CALL SUB1 (A)
END
SUBROUTINE SUB1(B)
INTEGER B(1:,:,10:)
! Inside the subroutine, B is associated with A.
I It has the same extents as A but different bounds (1:10,1:10,10:39).
END SUBROUTINE

Deferred-Shape Arrays

Deferred-shape arrays are allocatable arrays or array pointers, where the bounds
can be defined or redefined during execution of the program.

70 XL Fortran Advanced Edition for Mac OS X: Language Reference

— Deferred_shape_spec_list

’7:
Y ;—‘ <

The extent of each dimension (and the related properties of bounds, shape, and
size) is undefined until the array is allocated or the pointer is associated with an
array that is defined. Before then, no part of the array may be defined, or
referenced except as an argument to an appropriate inquiry function. At that point,
an array pointer assumes the properties of the target array, and the properties of
an allocatable array are specified in an ALLOCATE statement.

The rank is the number of colons in the deferred_shape_spec_list.

Although a deferred_shape_spec_list may sometimes appear identical to an
assumed_shape_spec_list, deferred-shape arrays and assumed-shape arrays are not
the same. A deferred-shape array must have either the POINTER attribute or the
ALLOCATABLE attribute, while an assumed-shape array must be a dummy
argument that does not have the POINTER attribute. The bounds of a
deferred-shape array, and the actual storage associated with it, can be changed at
any time by reallocating the array or by associating the pointer with a different
array, while these properties remain the same for an assumed-shape array during
the execution of the containing subprogram.

Related Information:

+ |“Allocation Status” on page 61|

+ |[“Pointer Assignment” on page 113|

 [“ALLOCATABLE” on page 226

+ ["ALLOCATED(ARRAY) or ALLOCATED(SCALAR)” on page 432|
+ |”ASSOCIATED(POINTER, TARGET)” on page 435|

Allocatable Arrays

A deferred-shape array that has the ALLOCATABLE attribute is referred to as an
allocatable array. Its bounds and shape are determined when storage is allocated for
it by an ALLOCATE statement.

INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: A

ALLOCATE(A(10,-4:5,20)) ! Bounds of A are now defined (1:10,-4:5,1:20)

DEALLOCATE (A)
ALLOCATE(A(5,5,5)) I Change the bounds of A

Array Concepts 71

Migration Tip:
To minimize storage used:

FORTRAN 77 source

INTEGER A(1000),B(1000),C(1000)

C 1000 is the maximum size

WRITE (6,*) "Enter the size of the arrays:"
READ (5,*) N

DO I=1,N
A(I)=B(I)+C(I)

END DO

END

Fortran 90 or Fortran 95 source

INTEGER, ALLOCATABLE, DIMENSION(:)

:: A,B,C

WRITE (6,*) "Enter the size of the arrays:"
READ (5,%) N

ALLOCATE (A(N),B(N),C(N))

A=B+C
END

Related Information:

“Allocation Status” on page 61|

Array Pointers

An array with the POINTER attribute is referred to as an array pointer. Its bounds
and shape are determined when it is associated with a target through pointer
assignment or execution of an ALLOCATE statement. It can appear in a type
declaration, POINTER, or DIMENSION statement.

REAL, POINTER, DIMENSION(:,:) :: B
REAL, TARGET, DIMENSION(5,10) :: C, D(10,10)

B =>C ! Bounds of B are now defined (1:5,1:10)
B=>0D I B now has different bounds and is associated
I with different storage
ALLOCATE(B(5,5)) ! Change bounds and storage association again

END

Assumed-Size Arrays

Assumed-size arrays are dummy argument arrays where the size is inherited from
the associated actual array, but the rank and extents may differ. They can only be
declared inside subprograms.

72 XL Fortran Advanced Edition for Mac OS X: Language Reference

— Assumed_size_spec

[N *. [
>p

’7, |—lower‘_bound—:—|

A4 B] upper_bound——,
lower_bound—:

lower_bound, upper_bound
are specification expressions

If any bound is not constant, the array must be declared inside a subprogram and
the nonconstant bounds are determined on entry to the subprogram. If a lower
bound is omitted, its default value is 1.

The last dimension has no upper bound and is designated instead by an asterisk.
You must ensure that references to elements do not go past the end of the actual
array.

The rank equals one plus the number of upper_bound specifications in its
declaration, which may be different from the rank of the actual array it is
associated with.

The size is assumed from the actual argument that is associated with the
assumed-size array:

* If the actual argument is a noncharacter array, the size of the assumed-size array
is that of the actual array.

¢ If the actual argument is an array element from a noncharacter array, and if the
size remaining in the array beginning at this element is S, then the size of the
dummy argument array is S. Array elements are processed in array element
order.

e If the actual argument is a character array, array element, or array element
substring, and assuming that:
— A is the starting offset, in characters, into the character array
— T is the total length, in characters, of the original array
— S is the length, in characters, of an element in the dummy argument array

then the size of the dummy argument array is:
MAX(INT (T-A +1)/S,0)

For example:

CHARACTER(10) A(10)
CHARACTER(1) B(30)
CALL SUBL(A)

CALL SUBL(A(4))

CALL SUBL(A(6) (5:10))

I Size of dummy argument array is 10
I Size of dummy argument array is 7
I Size of dummy argument array is 4 because there
I are just under 4 elements remaining in A
CALL SUB1(B(12)) ! Size of dummy argument array is 1, because the
I remainder of B can hold just one CHARACTER(10)
END I element.
SUBROUTINE SUBI(ARRAY)
CHARACTER(10) ARRAY (*)

END SUBROUTINE

Array Concepts 73

Examples of Assumed-Size Arrays
INTEGER X(3,2)

DOI =1,3
DO J =1,2
X(I,J) =1 = I The elements of X are 1, 2, 3, 2, 4, 6
END DO
END DO
PRINT *,SHAPE(X) ! The shape is (/ 3, 2 /)
PRINT *,X(1,:) ! The first row is (/ 1, 2 /)

CALL SUB1(X)

CALL SUB2(X)

END

SUBROUTINE SUB1(Y)
INTEGER Y(2,%)
PRINT *, SIZE(Y,1)

The dimensions of y are the reverse of x above
We can examine the size of the first dimension
but not the last one.

We can print out vectors from the first
dimension, but not the Tast one.

PRINT *, Y(:,1)
PRINT *, Y(:,2)
END SUBROUTINE
SUBROUTINE SUB2(Y)
INTEGER Y(*)
PRINT *, Y(6)

Y has a different rank than X above.

We have to know (or compute) the position of
the last element. Nothing prevents us from
subscripting beyond the end.

END SUBROUTINE
Notes:

1. An assumed-size array cannot be used as a whole array in an executable
construct unless it is an actual argument in a subprogram reference that does
not require the shape:

' A is an assumed-size array.

PRINT =,
UBOUND(A,1) ! OK - only examines upper bound of first dimension.
PRINT =, LBOUND(A) 1 0K - only examines lower bound of each dimension.

! However, 'B=UBOUND(A)' or 'A=5' would reference the upper bound of
! the Tast dimension and are not allowed. SIZE(A) and SHAPE(A) are
! also not allowed.

2. If a section of an assumed-size array has a subscript triplet as its last section
subscript, the upper bound must be specified. (Array sections and subscript
triplets are explained in a subsequent section.)

I'Ais a

2-dimensional assumed-size array

PRINT *, A(:, 6) I Triplet with no upper bound is not last dimension.
PRINT *, A(1, 1:10) I Triplet in last dimension has upper bound of 10.
PRINT *, A(5, 5:9:2) I Triplet in last dimension has upper bound of

9.

Array Elements

Array elements are the scalar data that make up an array. Each element inherits the
type, type parameters, and INTENT, PARAMETER, and TARGET attributes from
its parent array. The POINTER attribute is not inherited.

You identify an array element by an array element designator, whose form is:

> ar‘ray_name—_l—(—subscript_l ist—) <
array_struct_comp

74 XL Fortran Advanced Edition for Mac OS X: Language Reference

array_name is the name of an array

array_struct_comp is a structure component whose rightmost
comp_name is an array

subscript is an scalar integer expression

| IBM Extension |

A subscript is a real expression in XL Fortran.

; End of IBM Extension 4,

Notes

¢ The number of subscripts must equal the number of dimensions in the array.

e If array_struct_comp is present, each part of the structure component except the
rightmost must have rank zero (that is, must not be an array name or an array
section).

* The value of each subscript expression must not be less than the lower bound or
greater than the upper bound for the corresponding dimension.

The subscript value depends on the value of each subscript expression and on the
dimensions of the array. It determines which element of the array is identified by
the array element designator.

Related Information:
‘Structure Components” on page 39|
‘Array Sections and Structure Components” on page 79|

Array Element Order

The elements of an array are arranged in storage in a sequence known as the array
element order, in which the subscripts change most rapidly in the first dimension,
and subsequently in the remaining dimensions.

For example, an array declared as A(2, 3, 2) has the following elements:
Position of Array Element Array Element Order

A(1,1,1) 1
A(2,1,1) 2
A(1,2,1) 3
A(2,2,1) 4
A(1,3,1) 5
A(2,3,1) 6
A(1,1,2) 7
A(2,1,2) 8
A(1,2,2) 9
A(2,2,2) 10
A(1,3,2) 11
A(2,3,2) 12

Array Sections

An array section is a selected portion of an array. It is an array subobject that
designates a set of elements from an array, or a specified substring or derived-type
component from each of those elements. An array section is also an array.

Note: This introductory section describes the simple case, where structure

Array Concepts 75

components are not involved. [“Array Sections and Structure Components”]
explains the additional rules for specifying array sections that

are also structure components.

»>—qarray_name—(—section_subscript list—) B B ><
substring_range

section subscript:

> subscript ><
Esubscript_triplet;‘
vector_subscript

section_subscript
designates some set of elements along a particular dimension. It
can be composed of a combination of the following:

subscript

is a scalar integer expression, explained in
[Elements” on page 74

| IBM Extension

A subscript is a real expression in XL Fortran.

| End of IBM Extension

subscript_triplet, vector subscript
designate a (possibly empty) sequence of subscripts in a
given dimension. For details, see[“Subscript Triplets” on|
[page 77/ and [“Vector Subscripts” on page 78|

Note: At least one of the dimensions must be a subscript triplet
or vector subscript, so that an array section is distinct from
an array element:

INTEGER, DIMENSION(5,5,5) :: A
A(1,2,3) = 100
A(1,3,3) = 101
PRINT *, A(1,2,3)
PRINT =, A(1,2:2,3)
PRINT *, A(1,2:3,3)

A single array element, 100.

A one-element array section, (/ 100 /)
I A two-element array section,

(/ 100, 101 /)

substring_range

»—(

:) <
l—in t_exprl—l I—int_exprZ—l

int_exprl and int_expr2 are scalar integer expressions called
substring expressions, defined in|”Character Substrings” on page|
They specify the leftmost and rightmost character positions,

76 XL Fortran Advanced Edition for Mac OS X: Language Reference

respectively, of a substring of each element in the array section. If
an optional substring_range is present, the section must be from an
array of character objects.

An array section is formed from the array elements specified by the sequences of
values from the individual subscripts, subscript triplets, and vector subscripts,
arranged in column-major order.

For example, if SECTION = A(1:3, (/ 5,6,5 /), 4):
* The sequence of numbers for the first dimension is 1, 2, 3.
¢ The sequence of numbers for the second dimension is 5, 6, 5.

¢ The subscript for the third dimension is the constant 4.

The section is made up of the following elements of A, in this order:

A(1,5,4) SECTION(1,1)
A(2,5,4) |[----- First column ----- SECTION(2,1)
A(3,5,4) SECTION(3,1)
A(1,6,4) SECTION(1,2)
A(2,6,4) |----- Second column ---- SECTION(2,2)
A(3,6,4) SECTION(3,2)
A(1,5,4) SECTION(1,3)
A(2,5,4) |----- Third column ----- SECTION(2,3)
A(3,5,4) SECTION(3,3)

Some examples of array sections include:

INTEGER, DIMENSION(20,20) :: A
I These references to array sections require Toops or multiple
! statements in FORTRAN 77.

PRINT =, A(1:5,1) I Contiguous sequence of elements
PRINT *, A(1:20:2,10) ! Noncontiguous sequence of
elements

PRINT =, A(:,5) ! An entire column

PRINT =, A((/1,10,5/), (/7,3,1/)) ! A 3x3 assortment of elements

Related Information:
[“Structure Components” on page 39

Subscript Triplets

A subscript triplet consists of two subscripts and a stride, and defines a sequence
of numbers corresponding to array element positions along a single dimension.

[
>p

l—subscriptl—l . l—subscr‘ipt.?—l l—:—stride—|

subscriptl, subscript2
are subscripts that designate the first and last values in the
sequence of indices for a dimension.

If the first subscript is omitted, the lower array bound of that
dimension is used. If the second subscript is omitted, the upper
array bound of that dimension is used. (The second subscript is
mandatory for the last dimension when specifying sections of an
assumed-size array.)

stride is a scalar integer expression that specifies how many subscript
positions to count to reach the next selected element.

Array Concepts 77

A stride is a real expression in XL Fortran.

If the stride is omitted, it has a value of 1. The stride must have a
nonzero value:

* A positive stride specifies a sequence of integers that begins with
the first subscript and proceeds in increments of the stride to the
largest integer that is not greater than the second subscript. If
the first subscript is greater than the second, the sequence is
empty.

* When the stride is negative, the sequence begins at the first
subscript and continues in increments specified by the stride to
the smallest integer equal to or greater than the second
subscript. If the second subscript is greater than the first, the
sequence is empty.

Calculations of values in the sequence use the same steps as shown in
la DO Statement” on page 123

A subscript in a subscript triplet does not have to be within the declared bounds
for that dimension if all the values used in selecting the array elements for the
array section are within the declared bounds:
INTEGER A(9)
PRINT *, A(1:9:2) ! Count from 1 to 9 by 2s: 1, 3, 5, 7, 9.
PRINT =, A(1:10:2) ! Count from 1 to 10 by 2s: 1, 3, 5, 7, 9.

! No element past A(9) is specified.

Examples of Subscript Triplets

REAL, DIMENSION(10) :: A
INTEGER, DIMENSION(10,10) :: B
CHARACTER(10) STRING(1:100)

PRINT =, A(:) ! Print all elements of array.
PRINT =, A(:5) ! Print elements 1 through 5.
PRINT =, A(3:) ! Print elements 3 through 10.
PRINT %, STRING(50:100) ! Print all characters in

! elements 50 through 100.

I The following statement is equivalent to A(2:10:2) = A(1:9:2)

A(2::2) = A(:9:2) ! LHS = A(2), A(4), A(6), A(8), A(10)
! RHS = A(1), A(3), A(5), A(7), A(9)
! The statement assigns the odd-numbered
I elements to the even-numbered elements.

! The following statement is equivalent to PRINT *, B(1:4:3,1:7:6)

PRINT *, B(:4:3,:7:6) ! Print B(1,1), B(4,1), B(1,7), B(4,7)
PRINT *, A(10:1:-1) ! Print elements in reverse order.
PRINT %, A(10:1:1) ! These two are

PRINT *, A(1:10:-1) ! both zero-sized.

END

Vector Subscripts

A vector subscript is an integer array expression of rank one, designating a
sequence of subscripts that correspond to the values of the elements of the
expression.

A vector subscript is a real array expression in XL Fortran.

78 XL Fortran Advanced Edition for Mac OS X: Language Reference

The sequence does not have to be in order, and may contain duplicate values:

INTEGER A(10), B(3), C(3)

PRINT =, A((/ 10,9,8 /)) ! Last 3 elements in reverse order
B=A((/1,2,27/)) 1 B(1) = A(1), B(2) = A(2), B(3) = A(2) also
END

An array section with a vector subscript in which two or more elements of the
vector subscript have the same value is called a many-one section. Such a section
must not:

* Appear on the left side of the equal sign in an assighment statement

* Be initialized through a DATA statement

e Be used as an input item in a READ statement

Notes:

1. An array section used as an internal file must not have a vector subscript.

2. If you pass an array section with a vector subscript as an actual argument, the
associated dummy argument must not be defined or redefined.

3. An array section with a vector subscript must not be the target in a pointer
assignment statement.
I We can use the whole array VECTOR as a vector subscript for A and B

INTEGER, DIMENSION(3) :: VECTOR= (/ 1,3,2 /), A, B
INTEGER, DIMENSION(4) :: C = (/ 1,2,4,8 /)

A(VECTOR) = B ! A(1) = B(1), A(3) = B(2), A(2) = B(3)
A=B((/3,21/)) L A(L) = B(3), A(2) = B(2), A(3) = B(1)
PRINT *, C(VECTOR(1:2)) ! Prints C(1), C(3)

END

Array Sections and Substring Ranges

For an array section with a substring range, each element in the result is the
designated character substring of the corresponding element of the array section.
The rightmost array name or component name must be of type character.
PROGRAM SUBSTRING
TYPE DERIVED

CHARACTER(10) STRING(5) ! Each structure has 5 strings of 10 chars.
END TYPE DERIVED
TYPE (DERIVED) VAR, ARRAY(3,3) ! A variable and an array of derived type.

VAR%STRING(:)(1:3) = 'abc' I Assign to chars 1-3 of elements 1-5.
VAR%STRING(3:) (4:6) = '123' I Assign to chars 4-6 of elements 3-5.

ARRAY (1:3,2)%STRING(3) (5:10) = 'hello’
I Assign to chars 5-10 of the third element in
! ARRAY(1,2)%STRING, ARRAY(2,2)%STRING, and
END I ARRAY(3,2)%STRING

Array Sections and Structure Components

To understand how array sections and structure components overlap, you should
be familiar with the syntax for [“Structure Components” on page 39,

What we defined at the beginning of this section as an array section is really only
a subset of the possible array sections. An array name or array name with a
section_subscript_list can be a subobject of a structure component:

Array Concepts 79

struct_sect_subobj:

»>—object_name

l—(—section_subscript_list—)—l

Y
A

> ——%———comp_name
—[:l_ l—(—section_subscript_list—)—l l—substring_range—l

object_name
is the name of an object of derived type

section_subscript_list, substring_range
are the same as defined under [“Array Sections” on page 75

comp_name
is the name of a derived-type component

% or . Separator character.

Note: The . (period) separator is an IBM extension.

Notes:
1. The type of the last component determines the type of the array.

2. Only one part of the structure component may have nonzero rank. Either the
rightmost comp_name must have a section_subscript_list with nonzero rank, or
another part must have nonzero rank.

3. Any parts to the right of the part with nonzero rank must not have the
POINTER attribute.

TYPE BUILDING_T
LOGICAL RESIDENTIAL
END TYPE BUILDING_T

TYPE STREET_T
TYPE (BUILDING_T) ADDRESS(500)
END TYPE STREET_T

TYPE CITY_T
TYPE (STREET_T) STREET(100,100)
END TYPE CITY T

TYPE (CITY_T) PARIS

TYPE (STREET_T) S

TYPE (BUILDING_T) RESTAURANT

I LHS is not an array section, no subscript triplets or vector subscripts.
PARIS%STREET(10,20) = S

I None of the parts are array sections, but the entire construct

! is a section because STREET has a nonzero rank and is not

I the rightmost part.

PARIS%STREET%ADDRESS (100) = BUILDING_T(.TRUE.)

I STREET(50:100,10) is an array section, making the LHS an array section
I with rank=2, shape=(/51,10/).

! ADDRESS(123) must not be an array section because only one can appear
! in a reference to a structure component.

PARIS%STREET (50:100,10)%ADDRESS (123)%RESIDENTIAL = .TRUE.

END

80 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rank and Shape of Array Sections

For an array section that is not a subobject of a structure component, the rank is
the number of subscript triplets and vector subscripts in the section_subscript_list.
The number of elements in the shape array is the same as the number of subscript
triplets and vector subscripts, and each element in the shape array is the number
of integer values in the sequence designated by the corresponding subscript triplet
or vector subscript.

For an array section that is a subobject of a structure component, the rank and
shape are the same as those of the part of the component that is an array name or
array section.

DIMENSION :: ARR1(10,20,100)
TYPE STRUCT2_T
LOGICAL SCALAR_COMPONENT
END TYPE
TYPE STRUCT_T
TYPE (STRUCT2_T), DIMENSION(10,20,100) :: SECTION
END TYPE

TYPE (STRUCT_T) STRUCT

! One triplet + one vector subscript, rank = 2.

I Triplet designates an extent of 10, vector subscript designates
I an extent of 3, thus shape = (/ 10,3 /).

ARRI(:, (/ 1,3,4 /), 10) = 0

! One triplet, rank = 1.

I Triplet designates 5 values, thus shape = (/ 5 /).
STRUCT%SECTION(1,10,1:5)%SCALAR_COMPONENT = .TRUE.

! Here SECTION is the part of the component that is an array,
! so rank = 3 and shape = (/ 10,20,100 /), the same as SECTION.
STRUCT%SECTION%SCALAR_COMPONENT = .TRUE.

Array Constructors

An array constructor is a sequence of specified scalar values. It constructs a
rank-one array whose element values are those specified in the sequence.

»»>—(/—ac_value_list—/) ><

ac_value
is an expression or implied-DO list that provides values for array elements.
Each ac_value in the array constructor must have the same type and type
parameters.

If ac_value is:

* A scalar expression, its value specifies an element of the array
constructor.

* An array expression, the values of the elements of the expression, in
array element order, specify the corresponding sequence of elements of
the array constructor.

* An implied-DO list, it is expanded to form an ac_value sequence under
the control of the ac_do_variable, as in the DO construct.

Array Concepts 81

The data type of the array constructor is the same as the data type of the
ac_value_list expressions. If every expression in an array constructor is a constant
expression, the array constructor is a constant expression.

You can construct arrays of rank greater than one using an intrinsic function. See
|”RESHAPE(SOURCE, SHAPE, PAD, ORDER)” on page 513| for details.

INTEGER, DIMENSION(5) :: A, B, C, D(2,2)

A=(/1,2,3,4,5/) ! Assign values to all elements in A

A(3:5) = (/ 0,1,0 /) ! Assign values to some elements
C = MERGE (A, B, (/ T,F,T,T,F /)) ! Construct temporary logical mask

! The array constructor produces a rank-one array, which
! is turned into a 2x2 array that can be assigned to D.
D = RESHAPE(SOURCE = (/ 1,2,1,2 /), SHAPE = (/ 2,2 /))

! Here, the constructor Tinearizes the elements of D in
! array-element order into a one-dimensional result.
PRINT =, A((/ D /))

Implied-DO List for an Array Constructor

Implied-DO loops in array constructors help to create a regular or cyclic sequence
of values, to avoid specifying each element individually.

A zero-sized array of rank one is formed if the sequence of values generated by the
loop is empty.

A\
A

»»>—(—ac_value_list—,—implied_do_variable— = —exprl—,—expr2 B])
,—expr3

implied_do_variable
is a named scalar integer or real variable. In XL Fortran, an
implied_do_variable is a real expression. In a nonexecutable
statement, the type must be integer. You must not reference the value of an
implied_do_variable in the limit expressions exprl or expr2. Loop processing
follows the same rules as for an implied-DO in [“DATA” on page 256|and
uses integer or real arithmetic depending on the type of the implied-DO
variable.

The variable has the scope of the implied-DO, and it must not have the
same name as another implied-DO variable in a containing array
constructor implied-DO:

M=0

PRINT =, (/ (M, M=1, 10) /) ! Array constructor implied-DO
PRINT *, M I'M still 0 afterwards

PRINT *, (M, M=1, 10) I Non-array-constructor implied-DO
PRINT *, M I This one goes to 11

PRINT =, (/ ((M, M=1, 5), N=1, 3) /)
I The result is a 15-element, one-dimensional array.
I The inner loop cannot use N as its variable.

exprl, expr2, and expr3
are integer scalar expressions

82 XL Fortran Advanced Edition for Mac OS X: Language Reference

| IBM Extension

In XL Fortran, exprl, expr2 and expr3 are real expressions.

| End of IBM Extension

PRINT *, (/ (I, I =1, 3) /)

! Sequence is (1, 2, 3)

PRINT *, (/ (I, I =1, 10, 2) /)

! Sequence is (1, 3, 5, 7, 9)
PRINT =, (/ (I, I+1, I+2, I =1, 3) /)
! Sequence is (1, 2, 3, 2, 3, 4, 3, 4, 5)
PRINT =, (/ ((I, I =1, 3), J = /)
)

1, 3)
! Sequence is (1, 2, 3, 1, 2, 3, 1, 2

» 3

PRINT =, (/ ((I, I=1,3),d=1,3)1/)
! Sequence is (1, 1, 2, 1, 2, 3)

PRINT *, (/2,3,(I, I+1, I =5, 8)/)

! Sequence is (2, 3, 5, 6, 6, 7, 7, 8, 8, 9).

! The values in the implied-DO Toop before

I I=5 are calculated for each iteration of the loop.

Expressions Involving Arrays

Arrays can be used in the same kinds of expressions and operations as scalars.
Intrinsic operations, assignments, or elemental procedures can be applied to one or
more arrays.

For intrinsic operations, in expressions involving two or more array operands, the
arrays must have the same shape so that the corresponding elements of each array
can be assigned to or be evaluated. In a defined operation arrays can have
different shapes. Arrays with the same shape are conformable. In a context where a
conformable entity is expected, you can also use a scalar value: it is conformable
with any array, such that each array element has the value of the scalar.

For example:

INTEGER, DIMENSION(5,5) :: A,B,C
REAL, DIMENSION(10) :: X,Y
! Here are some operations on arrays

A=B+C I Add corresponding elements of both arrays.
A= -B I Assign the negative of each element of B.

A = MAX(A,B,C) VA(i,3) = MAX(A(i,j), B(i,3), C(i,3))

X = SIN(Y) I Calculate the sine of each element.

! These operations show how scalars are conformable with arrays
A=A+5 I Add 5 to each element.

A =10 I Assign 10 to each element.

A = MAX(B, C, 5) ! A(i,j) = MAX(B(i,j), C(i,3), 5)

END

Related Information:
‘Elemental Intrinsic Procedures” on page 421

‘Intrinsic Assignment” on page 101
‘"WHERE” on page 390 shows a way to assign values to some elements in an

array but not to others
[‘FORALL Construct” on page 110|

Array Concepts 83

84 XL Fortran Advanced Edition for Mac OS X: Language Reference

Expressions and Assignment

This section describes the rules for formation, interpretation, and evaluation of
expressions and assignment statements:

* [“Introduction to Expressions and Assignment”]

* |“Constant Expressions” on page 86

* |“Initialization Expressions” on page 87

* |“Specification Expressions” on page 88

» |“Operators and Expressions” on page 9|

» [“Extended Intrinsic and Defined Operations” on page 97]

* |"How Expressions Are Evaluated” on page 98|

* |“Intrinsic Assignment” on page 101
[“WHERE Construct” on page 104|

b_F95 ["FORALL Construct” on page 110[Fs5 |

[“Pointer Assignment” on page 113

Related Information
+ |“Defined Operators” on page 143
+ |“Defined Assignment” on page 144

Introduction to Expressions and Assignment

An expression is a data reference or a computation, and is formed from operands,
operators, and parentheses. An expression, when evaluated, produces a value,
which has a type, a shape, and possibly type parameters.

An operand is either a scalar or an array. An operator is either intrinsic or defined. A
unary operation has the form:
operator operand

A binary operation has the form:
operand, operator operand,

where the two operands are shape-conforming. If one operand is an array and the
other is a scalar, the scalar is treated as an array of the same shape as the array,
and every element of the array has the value of the scalar.

Any expression contained in parentheses is treated as a data entity. Parentheses can
be used to specify an explicit interpretation of an expression. They can also be
used to restrict the alternative forms of the expression, which can help control the
magnitude and accuracy of intermediate values during evaluation of the
expression. For example, the two expressions

(IxJ) /K

Ix(J/K)

are mathematically equivalent, but may produce different computational values as
a result of evaluation.

© Copyright IBM Corp. 1990, 2003 85

Primary
A primary is the simplest form of an expression. It can be one of the following:
e A data object
* An array constructor
* A structure constructor

. A complex constructor

e A function reference
* An expression enclosed in parentheses

A primary that is a data object must not be an assumed-size array.

Examples of Primaries

12.3 Constant
"ABCDEFG' (2:3) Subobject of a constant
VAR Variable name

EMP(6,'SMITH') Structure constructor
SIN(X) Function reference

!
!
!
(/7.0,8.0/) ! Array constructor
!
!
(T-1) ! Expression in parentheses

Type, Parameters, and Shape

The type, type parameters, and shape of a primary are determined as follows:

* A data object or function reference acquires the type, type parameters, and shape
of the object or function reference, respectively. The type, parameters, and shape
of a generic function reference are determined by the type, parameters, and
ranks of its actual arguments.

* A structure constructor is a scalar and its type is that of the constructor name.

* An array constructor has a shape determined by the number of constructor
expressions, and its type and parameters are determined by those of the
constructor expressions.

* A parenthesized expression acquires the type, parameters, and shape of the
expression.

If a pointer appears as a primary in an operation in which it is associated with a
nonpointer dummy argument, the target is referenced. The type, parameters, and
shape of the primary are those of the target. If the pointer is not associated with a
target, it can appear only as an actual argument in a procedure reference whose
corresponding dummy argument is a pointer, or as the target in a pointer
assignment statement.

Given the operation [exprl] op expr2, the shape of the operation is the shape of
expr2 if op is unary or if exprl is a scalar. Otherwise, its shape is that of exprl.

The type and shape of an expression are determined by the operators and by the
types and shapes of the expression’s primaries. The type of the expression can be
intrinsic or derived. An expression of intrinsic type has a kind parameter and, if it
is of type character, it also has a length parameter.

Constant Expressions

A constant expression is an expression in which each operation is intrinsic and each

primary is one of the following:

* A constant or a subobject of a constant.

* An array constructor where each element and the bounds and strides of each
implied-DO are expressions whose primaries are either constant expressions or
implied-DO variables.

86 XL Fortran Advanced Edition for Mac OS X: Language Reference

* A structure constructor where each component is a constant expression.

* An elemental intrinsic function reference where each argument is a constant
expression.

* A transformational intrinsic function reference where each argument is a
constant expression.

. A reference to the transformational intrinsic function NULL.

* A reference to an array inquiry function (except ALLOCATED), a numeric
inquiry function, the BIT_SIZE function, the LEN function, or the KIND
function. Each argument is either a constant expression or it is a variable whose
properties inquired about are not assumed, not defined by an expression that is
not a constant expression, and not definable by an ALLOCATE or pointer
assignment statement.

* A constant expression enclosed in parentheses.

Any subscript or substring expression within the expression must be a constant
expression.

Examples of Constant Expressions

-48.9

name('Pat', 'Doe')
TRIM('ABC ")
(MOD(9,4)*%3.5)

Initialization Expressions

An initialization expression is a constant expression. Rules for constant expressions
also apply to initialization expressions, except that items that form primaries are
constrained by the following rules:

* The exponentiation operation can only have an integer power.

e A primary that is an elemental intrinsic function reference must be of type
integer or character, where each argument is an initialization expression of type
integer or character.

* Only one of the following transformational functions can be referenced:
REPEAT, RESHAPE, SELECTED_INT_KIND, SELECTED_REAL_KIND,
TRANSFER, or TRIM. Each argument must be an initialization expression. The
following generic intrinsic functions (and related specific functions) are also
allowed:

| IBM Extension

— ABS (and only the ABS, DABS, and QABS specific functions)
- AIMAG, IMAG

- CONJG

— DIM (and only the DIM, DDIM, and QDIM specific functions)
- DPROD

— INT, REAL, DBLE, QEXT, CMPLX, DCMPLX, QCMPLX

- MAX

- MIN

- MOD

— NINT

— SIGN

- INDEX, SCAN, VERIFY (optional 3rd argument allowed)

| End of IBM Extension
- NULL

Expressions and Assignment 87

If an initialization expression includes a reference to an inquiry function for a type
parameter or an array bound of an object specified in the same specification part,
the type parameter or array bound must be specified in a prior specification of the
specification part. The prior specification can be to the left of the inquiry function
in the same statement.

Examples of Initialization Expressions

3.4%%3
KIND(57438)
(/'desk','lamp'/)
Iabl//lcdl//lefl

Specification Expressions

A specification expression is an expression with limitations that you can use to
specify items such as character lengths and array bounds.

A specification expression is a scalar, integer, restricted expression.

A restricted expression is an expression in which each operation is intrinsic and each
primary is:
* A constant or a subobject of a constant.

e A variable that is a dummy argument that has neither the OPTIONAL nor the
INTENT(OUT) attribute, or a subobject of such a variable.

e A variable that is in a common block, or a subobject of such a variable.

* A variable accessible by use association or host association, or a subobject of
such a variable.

* An array constructor where each element and the bounds and strides of each
implied-DO are expressions whose primaries are either restricted expressions or
implied-DO variables.

* A structure constructor where each component is a restricted expression.

* A reference to an array inquiry function (except ALLOCATED), the bit inquiry
function BIT_SIZE, the character inquiry function LEN, the kind inquiry
function KIND, or a numeric inquiry function. Each argument is either a
restricted expression, or it is a variable whose properties inquired about are not
dependent on the upper bound of the last dimension of an assumed-size array,
not defined by an expression that is not a restricted expression, or not definable
by an ALLOCATE statement or by a pointer assignment statement.

| Fortran 95

* A reference to any remaining intrinsic functions defined in this document where
each argument is a restricted expression.

| End of Fortran 95

| IBM Extension

* A reference to a system inquiry function, where any arguments are restricted
expressions.

| End of IBM Extension

* Any subscript or substring expression must be a restricted expression.

88 XL Fortran Advanced Edition for Mac OS X: Language Reference

* A reference to a specification function, where any arguments are restricted
expressions.

| Fortran 95 |

You can use a specification function in a specification expression. A function is a
specification function if it is a pure function that is not an intrinsic, internal or
statement function. A specification function cannot have a dummy procedure
argument, and cannot be recursive.

| End of Fortran 95 |

A variable in a specification expression must have its type and type parameters, if
any, specified by a previous declaration in the same scoping unit, or by the implicit
typing rules in effect for the scoping unit, or by host or use association. If a
variable in a specification expression is typed by the implicit typing rules, its
appearance in any subsequent type declaration statement must confirm the implied
type and type parameters.

If a specification expression includes a reference to an inquiry function for a type
parameter or an array bound of an entity specified in the same specification part,
the type parameter or array bound must be specified in a prior specification of the
specification part. If a specification expression includes a reference to the value of
an element of an array specified in the same specification part, the array bounds
must be specified in a prior declaration. The prior specification can be to the left of
the inquiry function in the same statement.

Examples of Specification Expressions

LBOUND(C,2)+6 I C is an assumed-shape dummy array
ABS (1) *J I' T and J are scalar integer variables
276/NN(4) I NN is accessible through host association

| Fortran 95 |

The following example shows how a user-defined pure function, fact, can be used
in the specification expression of an array-valued function result variable:

MODULE MOD

CONTAINS
INTEGER PURE FUNCTION FACT(N)
INTEGER, INTENT(IN) :: N

END FUNCTION FACT
END MODULE MOD

PROGRAM P
PRINT *, PERMUTE('ABCD')
CONTAINS
FUNCTION PERMUTE (ARG)
USE MOD
CHARACTER(*), INTENT(IN) :: ARG

CHARACTER(LEN(ARG)) :: PERMUTE (FACT(LEN(ARG)))
END FUNCTION PERMUTE
END PROGRAM P

End of Fortran 95 |

Expressions and Assignment 89

Operators and Expressions

This section presents the expression levels in the order of evaluation precedence,
from least to most.

General

The general form of an expression (general_expr) is:

> |_ _| expr ><
general_expr—defined _binary_op

defined_binary_op
is a defined binary operator. See|[“Extended Intrinsic and Defined]
[Operations” on page 97.|

expr is one of the kinds of expressions defined below.

There are four kinds of intrinsic expressions: arithmetic, character, relational, and
logical.

Arithmetic

An arithmetic expression (arith_expr), when evaluated, produces a numeric value.
The form of arith_expr is:

v
A

[N

arith_term

| l—arith_expr‘—l I— j]J

The form of arith_term is:

l—arith_term—[/]J

-
>

arith_factor >

90 XL Fortran Advanced Edition for Mac OS X: Language Reference

The form of arith_factor is:

»>—arith_primary

I— *% —arithjactor—l

An arith_primary is a primary of arithmetic type.

The following table shows the available arithmetic operators and the precedence
each takes within an arithmetic expression.

Arithmetic Operator Representation Precedence
* Exponentiation First
* Multiplication Second
Division Second
+ Addition or identity Third
- Subtraction or negation Third

XL Fortran evaluates the terms from left to right when evaluating an arithmetic
expression containing two or more addition or subtraction operators. For example,
2+3+4 is evaluated as (2+3)+4, although a processor can interpret the expression in
another way if it is mathematically equivalent and respects any parentheses.

The factors are evaluated from left to right when evaluating a term containing two
or more multiplication or division operators. For example, 234 is evaluated as
(2%3) %4.

The primaries are combined from right to left when evaluating a factor containing
two or more exponentiation operators. For example, 2+*3+*4 is evaluated as
2%*(3%x4). (Again, mathematical equivalents are allowed.)

The precedence of the operators determines the order of evaluation when XL
Fortran is evaluating an arithmetic expression containing two or more operators
having different precedence. For example, in the expression -A*+3, the
exponentiation operator (**) has precedence over the negation operator (-).
Therefore, the operands of the exponentiation operator are combined to form an
expression that is used as the operand of the negation operator. Thus, -A**3 is
evaluated as - (A**3).

Note that expressions containing two consecutive arithmetic operators, such as
Ax*-B or A*-B, are not allowed. You can use expressions such as A**(-B) and
Ax(-B).

If an expression specifies the division of an integer by an integer, the result is
rounded to an integer closer to zero. For example, (-7)/3 has the value -2.

| IBM Extension |

For details of exception conditions that can arise during evaluation of
ﬂoatini-i oint expressions, see [Detecting and Trapping Floating-Point Exceptions|in the

| End of IBM Extension |

Expressions and Assignment 91

Examples of Arithmetic Expressions

Arithmetic Expression Fully Parenthesized Equivalent
-b**2/2.0 -((b**2)/2.0)

i**j**z i**(j**z)

a/b*™2 - ¢ (a/(b**2)) - ¢

Data Type of an Arithmetic Expression
Because the identity and negation operators operate on a single operand, the type
of the resulting value is the same as the type of the operand.

The following table indicates the resulting type when an arithmetic operator acts
on a pair of operands.

Notation: T(param), where T is the data type (I: integer, R: real, X: complex) and
param is the kind type parameter.

Table 3. Result Types for Binary Arithmetic Operators

second operand

first operand I(1) 1(2) 1(4) I8) R@ R@B) R@6) X@ X(@® X(16)
I(1) (1) 12 1(4) I(8) R@) R@B) R@A6) X4 X(@B) X(16)
1(2) 120 12 14 I8 R@ REB R@I6) XA@) X@B) X(16)
1(4) I4) I4) I4) I8 R@ R@B) R(16) XA X8 X(16)
1(8) I8) I8 I8 I8 R@ R@B) R(16) XA@) X8 X(16)
R(4) R4) R@ R@ R@ R@ RE RI16) X4 X@B) X(16)
R(8) RB) R@® R@® R@B R@B REB R16) X@B) X@B) X(16)
R(16) R(16) R(16) R(16) R(16) R(16) R(16) R(16) X(16) X(16) X(16)
X(4) X(4) X4 X X@) X4 X® X(16) X4 X(©® X(1e)
X(8) X@®) X8 X8 X(8) X8 X(©® X(16) X(8) X8 X(16)
X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16)

| IBM Extension

Notes:

1. XL Fortran implements REAL(4) operations using REAL(4) internal precision.
See [Detecting and Trapping Floating-Point Exceptions|in the for
details.

2. XL Fortran implements integer operations using INTEGER(4) arithmetic, or
INTEGER(8) arithmetic if data items are 8 bytes in length. If the intermediate
result is used in a context requiring INTEGER(1) or INTEGER(2) data type, it
is converted as required.

INTEGER(2) 12_1, 12 2, 12 RESULT
INTEGER(4) 14

12 1 = 32767 ! Maximum I(2)

12_2 = 32767 I Maximum I(2)

14 =121+122

PRINT *, "I4=", I4 ! Prints 14=-2

12 RESULT = 12_1 + 12_2 ! Assignment to I(2) variable
14 = I2_RESULT I and then assigned to an I(4)
PRINT *, "I4=", I4 ! Prints I4=-2

END

End of IBM Extension

92 XL Fortran Advanced Edition for Mac OS X: Language Reference

Character

A character expression, when evaluated, produces a result of type character. The
form of char_expr is:

>p-

l—char‘_exp r—//]

char_primary ><

char_primary is a primary of type character. All character primaries in the
expression must have the same kind type parameter, which is also the kind type
parameter of the result.

The only character operator is //, representing concatenation.

In a character expression containing one or more concatenation operators, the
primaries are joined to form one string whose length is equal to the sum of the
lengths of the individual primaries. For example, 'AB'//'CD'//'EF' evaluates to
"ABCDEF', a string 6 characters in length.

Parentheses have no effect on the value of a character expression.

A character expression can involve concatenation of an operand whose length was

declared with an asterisk in parentheses (indicating inherited length), if the

inherited-length character string is used to declare:

¢ A dummy argument specified in a FUNCTION, SUBROUTINE, or ENTRY
statement. The length of the dummy argument assumes the length of the
associated actual argument on invocation.

* A named constant. It takes on the length of the constant value.

* The length of an external function result. The calling scoping unit must not
declare the function name with an asterisk. On invocation, the length of the
function result assumes this defined length.

Example of a Character Expression

CHARACTER(7) FIRSTNAME, LASTNAME

FIRSTNAME="'Martha'

LASTNAME="Edwards"'

PRINT =, LASTNAME//', '//FIRSTNAME ! Qutput:'Edwards, Martha'
END

Relational

A relational expression (rel_expr), when evaluated, produces a result of type logical,
and can appear wherever a logical expression can appear. It can be an arithmetic
relational expression or a character relational expression.

Arithmetic Relational Expressions
An arithmetic relational expression compares the values of two arithmetic

expressions. Its form is:

»>—arith_exprl—relational operator—arith_expr2 ><

arith_expr1 and arith_expr2
are each an arithmetic expression. Complex expressions can only
be specified if relational_operator is .EQ., .NE., <>, ==, or /=.

relational_operator
is any of:

Expressions and Assignment 93

Relational Operator Representing

.LT. or < Less than

.LE. or <= Less than or equal to
EQ. or == Equal to

NE. or *<>or /= Not equal to

.GT. or > Greater than

.GE. or >= Greater than or equal to

Note: * XL Fortran relational operator.

An arithmetic relational expression is interpreted as having the logical value

.true. if the values of the operands satisfy the relation specified by the operator. If
the operands do not satisfy the specified relation, the expression has the logical
value .false..

If the types or kind type parameters of the expressions differ, their values are
converted to the type and kind type parameter of the expression (arith_exprl +
arith_expr2) before evaluation.

Example of an Arithmetic Relational Expression:
IF (NODAYS .GT. 365) YEARTYPE = 'leapyear'
Character Relational Expressions
A character relational expression compares the values of two character expressions.

Its form is:

»>—char_exprl—relational_operator—char_exprZ

Y
A

char_exprl and char_expr2
are each character expressions

relational_operator

is any of the relational operators described in|“Arithmetiq

[Relational Expressions” on page 93

For all relational operators, the collating sequence is used to interpret a character
relational expression. The character expression whose value is lower in the
collating sequence is less than the other expression. The character expressions are
evaluated one character at a time from left to right. You can also use the intrinsic
functions (LGE, LLT, and LLT) to compare character strings in the order specified
by the ASCII collating sequence. For all relational operators, if the operands are of
unequal length, the shorter is extended on the right with blanks. If both char_exprl
and char_expr2 are of zero length, they are evaluated as equal.

| IBM Extension |

Even if char_exprl and char_expr2 are multibyte characters (MBCS) in XL Fortran,
the ASCII collating sequence is still used.

| End of IBM Extension |

Example of a Character Relational Expression:

94 XL Fortran Advanced Edition for Mac OS X: Language Reference

IF (CHARIN .GT. '©' .AND. CHARIN .LE. '9') CHAR_TYPE = 'digit'

Logical

A logical expression (logical_expr), when evaluated, produces a result of type

logical. The form of a logical expression is:

A\
A

>

|_ | logical_disjunct
logical_expr

—.EQV.
NEQV.——
(1)
.XOR.
Notes:
1 XL Fortran logical operator

The form of a logical_disjunct is:

[
>p

|_ _| logical_term
logical_disjunct—.OR.

The form of a logical_term is:

logical_factor

»h-
>

|—Zogical_ter‘m—.AND.—|

The form of a logical_factor is:

LL—J—[logical_pr‘imary:lJ
.NOT. rel_expr

logical_primary is a primary of type logical.
rel_expr is a relational expression.

The logical operators are:

Logical Operator Representing Precedence
NOT. Logical negation First (highest)
AND. Logical conjunction Second
.OR. Logical inclusive disjunction | Third
XOR. (See Note *.) Logical exclusive disjunction | Fourth (lowest) (See Note *.)
EQV. Logical equivalence Fourth (lowest)
NEQV. Logical nonequivalence Fourth (lowest)

Note: * XL Fortran logical operator.

IBM Extension

The .XOR. operator is treated as an intrinsic operator only when the -qx1f77=intxor

Expressions and Assignment 95

compiler option is specified. (See the Fqx1f77 Option|in the [User’s Guide for details.)
Otherwise, it is treated as a defined operator. If it is treated as an intrinsic operator,
it can also be extended by a generic interface.

The precedence of the operators determines the order of evaluation when a logical

End of IBM Extension

expression containing two or more operators having different precedences is

evaluated. For example, evaluation of the expression A.OR.B.AND.C is the same as
evaluation of the expression A.OR. (B.AND.C).

Value of a Logical Expression
Given that x1 and x2 represent logical values, use the following tables to determine

the values of logical expressions:

x1 NOT. x1

True False

False True

x1 x2 .AND. .OR. XOR. .EQWV. NEQV.
False False False False False True False
False True False True True False True
True False False True True False True
True True True True False True False

Sometimes a logical expression does not need to be completely evaluated to

determine its value. Consider the following logical expression (assume that LFCT is

a function of type logical):
A .LT. B .OR. LFCT(Z)

If A is less than B, the evaluation of the function reference is not required to
determine that this expression is true.

XL Fortran evaluates a logical expression to a LOGICAL(n) or INTEGER(n) result,
where n is the kind type parameter. The value of n depends on the kind parameter

of each operand.

By default, for the unary logical operator .NOT., n will be the same as the kind
type parameter of the operand. For example, if the operand is LOGICAL(2), the

result will also be LOGICAL(2).

The following table shows the resultant type for unary operations:

OPERAND RESULT of Unary Operation
* BYTE INTEGER(1) *
LOGICAL(1) LOGICAL(1)
LOGICAL(2) LOGICAL(2)
LOGICAL(4) LOGICAL(4)
LOGICAL(8) LOGICAL(8)
* Typeless Default integer *

96 XL Fortran Advanced Edition for Mac OS X: Language Reference

Note: * Resultant types for unitary operations in XL Fortran

If the operands are of the same length, n will be that length.

IBM Extension

For binary logical operations with operands that have different kind type
parameters, the kind type parameter of the expression is the same as the larger
length of the two operands. For example, if one operand is LOGICAL(4) and the
other LOGICAL(2), the result will be LOGICAL(4).

End of IBM Extension

The following table shows the resultant type for binary operations:

Table 4. Result Types for Binary Logical Expressions

second operand
first

operand *BYTE LOGICAL(1) LOGICAL(2) LOGICAL4) LOGICAL(®) *Typeless
*BYTE *INTEGER(1) *LOGICAL(1) *LOGICAL(2) *LOGICAL(4) *LOGICAL(8) *INTEGER(1)
LOGICAL() LOGICAL(1) LOGICAL(1) LOGICAL(2) LOGICAL(4) LOGICAL(8) LOGICAL(1)
LOGICAL(2) LOGICAL(2) LOGICAL(2) LOGICAL(2) LOGICAL(4) LOGICAL(8) LOGICAL(2)
LOGICAL(4) LOGICAL(4) LOGICAL(4) LOGICAL(4) LOGICAL@#4) LOGICAL(S) LOGICAL(4)
LOGICAL(B) LOGICAL(8) LOGICAL(8) LOGICAL(S) LOGICAL(8) LOGICAL(8) LOGICAL(S8)

*Typeless *INTEGER(1) *LOGICAL(1) *LOGICAL(2) *LOGICAL(4) *LOGICAL(8) *Default

Integer

Note: * Resultant types for binary logical expressions in XL Fortran

If the expression result is to be treated as a default integer but the value cannot be
represented within the value range for a default integer, the constant is promoted
to a representable kind.

Primary

The form of a primary expression is:

A\
A

>
>p

|_ _| primary
defined_unary_op

defined_unary_op
is a defined unary operator. See [“Extended Intrinsic and Defined|

Operations.”]

Extended Intrinsic and Defined Operations

A defined operation is either a defined unary operation or a defined binar
operation. It is defined by a function and a generic interface block (see
[Blocks” on page 138). A defined operation is not an intrinsic operation, although
an intrinsic operator can be extended in a defined operation. For example, to add
two objects of derived type, you can extend the meaning of the intrinsic binary
operator for addition (+). If an extended intrinsic operator has typeless operands,
the operation is evaluated intrinsically.

Expressions and Assignment 97

The operand of a unary intrinsic operation that is extended must not have a type
that is required by the intrinsic operator. Either or both of the operands of a binary
intrinsic operator that is extended must not have the types or ranks that are
required by the intrinsic operator.

The defined operator of a defined operation must be defined in a generic interface.

A defined operator is an extended intrinsic operator or has the form:

—

»—.—Y letter . ><

(1)
(2)

$

Notes:
1 XL Fortran defined operator
2 XL Fortran defined operator

A defined operator must not contain more than 31 characters and must not be the
same as any intrinsic operator or logical literal constant.

See ["Generic Interface Blocks” on page 141| for details on defining and extending
operators in an interface block.

How Expressions Are Evaluated

Precedence of Operators

An expression can contain more than one kind of operator. When it does, the
expression is evaluated from left to right, according to the following precedence
among operators:

Defined unary

Arithmetic

Character

Relational

Logical

Defined binary

Ok wn P

For example, the logical expression:
L .OR. A+B .GE. C

where L is of type logical, and A, B, and C are of type real, is evaluated the same as
the logical expression below:

L .OR. ((A + B) .GE. ()

An extended intrinsic operator maintains its precedence. That is, the operator does
not have the precedence of a defined unary operator or a defined binary operator.

Summary of Interpretation Rules
Primaries that contain operators are combined in the following order:

1. Use of parentheses

2. Precedence of the operators

98 XL Fortran Advanced Edition for Mac OS X: Language Reference

o &

© N o

9.

Right-to-left interpretation of exponentiations in a factor
Left-to-right interpretation of multiplications and divisions in a term

Left-to-right interpretation of additions and subtractions in an arithmetic
expression

Left-to-right interpretation of concatenations in a character expression
Left-to-right interpretation of conjunctions in a logical term
Left-to-right interpretation of disjunctions in a logical disjunct

Left-to-right interpretation of logical equivalences in a logical expression

Evaluation of Expressions
Arithmetic, character, relational, and logical expressions are evaluated according to
the following rules:

A variable or function must be defined at the time it is used. You must define an
integer operand with an integer value, not a statement label value. All
referenced characters in a character data object or referenced array elements in
an array or array section must be defined at the time the reference is made. All
components of a structure must be defined when a structure is referenced. A
pointer must be associated with a defined target.

Execution of an array element reference, array section reference, and substring
reference requires the evaluation of its subscript, section subscript and substring
expressions. Evaluation of any array element subscript, section subscript,
substring expression, or the bounds and stride of any array constructor
implied-DO does not affect, nor is it affected by, the type of the containing
expression. See |[“Expressions Involving Arrays” on page 83.| You cannot use any
constant integer operation or floating-point operation whose result is not
mathematically defined in an executable program. If such expressions are
nonconstant and are executed, they are detected at run time. (Examples are
dividing by zero and raising a zero-valued primary to a zero-valued or
negative-valued power.) As well, you cannot raise a negative-valued primary of
type real to a real power.

The invocation of a function in a statement must not affect, or be affected by, the
evaluation of any other entity within the statement in which the function
reference appears. When the value of an expression is true, invocation of a
function reference in the expression of a logical IF statement or a WHERE
statement can affect entities in the statement that is executed. If a function
reference causes definition or undefinition of an actual argument of the function,
that argument or any associated entities must not appear elsewhere in the same
statement. For example, you cannot use the statements:

A(I) = FUNCL(I)

Y = FUNC2(X) + X

if the reference to FUNC1 defines I or the reference to FUNC2 defines X.

The data type of an expression in which a function reference appears does not
affect, nor is it affected by, the evaluation of the actual arguments of the
function.

An argument to a statement function reference must not be altered by evaluating
that reference.

IBM Extension |

Several compiler options affect the data type of the final result:

Expressions and Assignment 99

* When you use the -qintlog compiler option, you can mix integer and logical

values in expressions and statements. The data type and kind type parameter of
the result depends on the operands and the operator involved. In general:

— For unary logical operators (NOT.) and arithmetic unary operators (+,-):

Data Type of OPERAND Data Type of RESULT of Unary Operation
BYTE INTEGER(1)
INTEGER(n) INTEGER(n)
LOGICAL(n) LOGICAL(n)
Typeless Default integer

where n represents the kind type parameter. n must not be replaced with a
logical constant even if -qintlog is on, nor by a character constant even if
-qctyplss is on, nor can it be a typeless constant. In the case of INTEGER and
LOGICAL data types, the length of the result is the same as the kind type
parameter of the operand.

— For binary logical operators ((AND., .OR., .XOR., .EQV., .NEQV.) and

arithmetic binary operators (**, *, /, +, -), the following table summarizes
what data type the result has:

second operand
first
operand BYTE INTEGER(y) LOGICALC(y) Typeless
BYTE INTEGER(1) INTEGER(y) LOGICAL(y) INTEGER(1)
INTEGER(x) INTEGER(x) INTEGER(z) INTEGER(z) INTEGER(x)
LOGICAL(x) LOGICAL(x) INTEGER(z) LOGICAL(z) LOGICAL(x)
Typeless INTEGER(1) INTEGER(y) LOGICAL(y) Default integer

Note: z is the kind type parameter of the result such that z is equal to the
greater of x and y. For example, a logical expression with a
LOGICAL(4) operand and an INTEGER(2) operand has a result of
INTEGER(4).

For binary logical operators ((AND., .OR., .XOR., .EQV., .NEQV.), the result
of a logical operation between an integer operand and a logical operand or
between two integer operands will be integer. The kind type parameter of the
result will be the same as the larger kind parameter of the two operands. If
the operands have the same kind parameter, the result has the same kind
parameter.

* When you use the -qlog4 compiler option and the default integer size is
INTEGER(4), logical results of logical operations will have type LOGICAL(4),
instead of LOGICAL(n) as specified in the table above. If you specify the -qlog4
option and the default integer size is not INTEGER(4), the results will be as
specified in the table above.

* When you specify the compiler option, XL Fortran treats character

constant expressions as Hollerith constants. If one or both operands are character
constant expressions, the data type and the length of the result are the same as if
the character constant expressions were Hollerith constants. See the "Typeless”
rows in the previous tables for the data type and length of the result.

100 XL Fortran Advanced Edition for Mac OS X: Language Reference

See [XL Fortran Compiler-Option Reference|in the for information about

compiler options.

| End of IBM Extension |

Using BYTE Data Objects

| IBM Extension |

Data objects of type BYTE can be used wherever a LOGICAL(1), CHARACTER(),
or INTEGER(1) data object can be used.

The data types of BYTE data objects are determined by the context in which you
use them. XL Fortran does not convert them before use. For example, the type of a
named constant is determined by use, not by the initial value assigned to it.

* When you use a BYTE data object as an operand of an arithmetic, logical, or
relational binary operator, the data object assumes:
- An INTEGER(1) data type if the other operand is arithmetic, BYTE, or a
typeless constant
— A LOGICAL(1) data type if the other operand is logical
— A CHARACTER(1) data type if the other operand is character

* When you use a BYTE data object as an operand of the concatenation operator,
the data object assumes a CHARACTER(1) data type.

* When you use a BYTE data object as an actual argument to a procedure with an
explicit interface, the data object assumes the type of the corresponding dummy
argument:

— INTEGER() for an INTEGER(1) dummy argument
— LOGICAL(1) for a LOGICAL(1) dummy argument
- CHARACTER(@) for a CHARACTER(1) dummy argument

* When you use a BYTE data object as an actual argument passed by reference to
an external subprogram with an implicit interface, the data object assumes a
length of 1 byte and no data type.

* When you use a BYTE data object as an actual argument passed by value
(%VAL), the data object assumes an INTEGER(1) data type.

* When you use a BYTE data object in a context that requires a specific data type,
which is arithmetic, logical, or character, the data object assumes an
INTEGER(1), LOGICAL(1), or CHARACTER(1) data type, respectively.

* A pointer of type BYTE cannot be associated with a target of type character, nor
can a pointer of type character be associated with a target of type BYTE.

* When you use a BYTE data object in any other context, the data object assumes
an INTEGER(1) data type.

| End of IBM Extension

Intrinsic Assignment

Assignment statements are executable statements that define or redefine variables
based on the result of expression evaluation.

A defined assignment is not intrinsic, and is defined by a subroutine and an
interface block. See [“Defined Assignment” on page 144

Expressions and Assignment 101

The general form of an intrinsic assignment is:

A\
A

»»—variable— = —expression

The shapes of variable and expression must conform. variable must be an array if
expression is an array (see [‘Expressions Involving Arrays” on page 83). If expression
is a scalar and variable is an array, expression is treated as an array of the same
shape as variable, with every array element having the same value as the scalar
value of expression. variable must not be a many-one array section (see
[Subscripts” on page 78| for details), and neither variable nor expression can be an
assumed-size array. The types of variable and expression must conform as follows:

Type of variable Type of expression

Numeric Numeric

Logical Logical

Character Character

Derived type Derived type (same as variable)

In numeric assignment statements, variable and expression can specify different
numeric types and different kind type parameters. For logical assignment
statements, the kind type parameters can differ. For character assignment
statements, the length type parameters can differ.

If the length of a character variable is greater than the length of a character
expression, the character expression is extended on the right with blanks until the
lengths are equal. If the length of the character variable is less than the character
expression, the character expression is truncated on the right to match the length of
the character variable.

If variable is a pointer, it must be associated with a definable target that has type,
type parameters and shape that conform with those of expression. The value of
expression is then assigned to the target associated with variable.

Both variable and expression can contain references to any portion of variable.

An assignment statement causes the evaluation of expression and all expressions
within variable before assignment, the possible conversion of expression to the type
and type parameters of variable, and the definition of variable with the resulting
value. No value is assigned to variable if it is a zero-length character object or a
zero-sized array.

A derived-type assignment statement is an intrinsic assignment statement if there
is no accessible defined assignment for objects of this derived type. The derived
type expression must be of the same derived type as the variable. (See
[“Determining Type for Derived Types” on page 38|for the rules that determine
when two structures are of the same derived type.) Assignment is performed as if
each component of the expression (or each pointer) is assigned to the
corresponding component of the variable. Pointer assignment is executed for
pointer components and intrinsic assignment is performed for nonpointer
nonallocatablecomponents. For an allocatable component the following sequence of
operations is applied:

1. If the component of variable is currently allocated, it is deallocated.

102 XL Fortran Advanced Edition for Mac OS X: Language Reference

2. If the component of expression is currently allocated, the corresponding
component of variable is allocated with the same type and type parameters as
the component of expression. If it is an array, it is allocated with the same
bounds.

The value of the component of expression is then assigned to the corresponding
component of variable using intrinsic assignment.

When variable is a subobject, the assignment does not affect the definition status or
value of other parts of the object.

Arithmetic Conversion

For numeric intrinsic assignment, the value of expression may be converted to the
type and kind type parameter of variable, as specified in the following table:

Type of variable Value Assigned

Integer INT (expression, KIND=KIND(variable))
Real REAL(expression, KIND=KIND (variable))
Complex CMPLX(expression, KIND=KIND(variable))

| IBM Extension

Note: Integer operations for INTEGER(1), INTEGER(2), and INTEGER(4) data
objects are performed using INTEGER(4) arithmetic during evaluation of
expressions. If the intermediate result is used in a context requiring an
INTEGER(1) or INTEGER(2) data type, it is converted as required. Integer
operations for INTEGER(8) data items are performed using INTEGER(8)
arithmetic.

| End of IBM Extension

Character Assignment
Only as much of the character expression as is necessary to define the character
variable needs to be evaluated. For example:

CHARACTER SCOTT=4, DICK+8
SCOTT = DICK

This assignment of DICK to SCOTT requires only that you have previously defined
the substring DICK(1:4). You do not have to previously define the rest of DICK
(DICK(5:8)).

BYTE Assignment

| IBM Extension |

If expression is of type arithmetic, arithmetic assignment is used. Similarly, if
expression is of type character, character assignment is used, and if expression is of
type logical, logical assignment is used. If the expression on the right is of type
BYTE, arithmetic assignment is used.

| End of IBM Extension |

Examples of Intrinsic Assignment:

Expressions and Assignment 103

INTEGER 1(10)
LOGICAL INSIDE
REAL R,RMIN,RMAX
REAL :: A=2.3,B=4.5,(=6.7
TYPE PERSON
INTEGER(4) P_AGE
CHARACTER(20) P_NAME
END TYPE
TYPE (PERSON) EMP1, EMP2
CHARACTER(10) :: CH = 'ABCDEFGHIJ'

I1=5 1 AT1 elements of I assigned value of 5
RMIN = 28.5 ; RMAX = 29.5

R = (-B + SQRT(B**2 - 4.0%A*C))/(2.0%A)

INSIDE = (R .GE. RMIN) .AND. (R .LE. RMAX)

CH(2:4) = CH(3:5) ! CH is now 'ACDEEFGHIJ'

EMP1
EMP2

PERSON (45, 'Frank Jones')
EMP1

! EMP2%P_AGE is assigned EMP1%P_AGE using arithmetic assignment
! EMP2%P_NAME is assigned EMP1%P_NAME using character assignment

END

WHERE Construct

The WHERE construct masks the evaluation of expressions and assignments of
values in array assignment statements. It does this according to the value of a
logical array expression.

v

»>—WHERE_construct_statement |_ _|
where_body construct

v v

| 2

L—masked_ELSEWHERE_bZock-J l—ELSEWHERE_bZock—J

»—END_WHERE_statement

WHERE_construct_statement
See ["'WHERE” on page 390| for syntax details.

where_body_construct

104 XL Fortran Advanced Edition for Mac OS X: Language Reference

where_assignment_statement

(1)

A\
A

WHERE_statement

(2)
WHERE_construct
Notes:
1 Fortran 95 variable
2 Fortran 95 variable
where_assignment_statement
Is an assignment_statement.
| Fortran 95
masked_ELSEWHERE_block
»>—masked ELSEWHERE statement |_ J ><
where_body_construct
masked_ELSEWHERE_statement
Is an ELSEWHERE statement that specifies a mask_expr. See
[“ELSEWHERE” on page 274| for syntax details.
| End of Fortran 95
ELSEWHERE_block
»>—F| SEWHERE_statement ><

|—wher‘e_body_construct—|

ELSEWHERE_statement
Is an ELSEWHERE statement that does not specify a mask_expr. See
{“'ELSEWHERE” on page 274| for syntax details.

END_WHERE_statement
See [“END (Construct)” on page 277| for syntax details.

Rules:
* mask_expr is a logical array expression.

* In each where_assignment_statement, the mask_expr and the variable being defined
must be arrays of the same shape.

* A statement that is part of a where_body_construct must not be a branch target
statement. Also, ELSEWHERE, masked ELSEWHERE, and END WHERE
statements must not be branch target statements.

Fortran 95 |

Expressions and Assignment 105

* A where_assignment_statement that is a defined assignment must be an elemental
defined assignment.

* The mask_expr on the WHERE construct statement and all corresponding masked
ELSEWHERE statements must have the same shape. The mask_expr on a nested
WHERE statement or nested WHERE construct statement must have the same
shape as the mask_expr on the WHERE construct statement of the construct in
which it is nested.

¢ If a construct name appears on a WHERE construct statement, it must also
appear on the corresponding END WHERE statement. A construct name is
optional on the masked ELSEWHERE and ELSEWHERE statements in the
WHERE construct.

| End of Fortran 95 |

Interpreting Masked Array Assignments

To understand how to interpret masked array assignments, you need to
understand the concepts of a control mask (m.) and a pending control mask (my):

* The m, is an array of type logical whose value determines which elements of an
array in a where_assignment_statement will be defined. This value is determined
by the execution of one of the following:

— a WHERE statement
a WHERE construct statement
an ELSEWHERE statement

- a masked ELSEWHERE statement
an END WHERE statement

The value of m_ is cumulative; the compiler determines the value using the mask
expressions of surrounding WHERE statements and the current mask
expression. Subsequent changes to the value of entities in a mask_expr have no
effect on the value of m.. The compiler evaluates the mask_expr only once for
each WHERE statement, WHERE construct statement, or masked
ELSEWHERE statement[ro5 4

¢ The m, is a logical array that provides information to the next masked
assignment statement at the same nesting level on the array elements not

defined by the current WHERE statement, WHERE construct statement,
or masked ELSEWHERE statement.[_ro5 4

The following describes how the compiler interprets statements in a WHERE,
WHERE construct, masked ELSEWHERE Fs5 4, ELSEWHERE, or END
WHERE statement. It describes the effect on m, and m, and any further behavior
of the statements, in order of occurrence.

* WHERE statement

| Fortran 95 |

— If the WHERE statement is nested in a WHERE construct, the following
occurs:

1. m. becomes m. .AND. mask_expr.

2. After the compiler executes the WHERE statement, 1, has the value it had
prior to the execution of the WHERE statement.

| End of Fortran 95 |

106 XL Fortran Advanced Edition for Mac OS X: Language Reference

— Otherwise, m_ becomes the mask_expr.
* WHERE construct

| Fortran 95 |

— If the WHERE construct is nested in another WHERE construct, the following
occurs:

1. m, becomes m..AND. (NOT. mask_expr).
2. m. becomes m_. .AND. mask_expr.

| End of Fortran 95 |

— Otherwise:

1. The compiler evaluates the mask_expr, and assigns m, the value of that
mask_expr.

2. my becomes .NOT. mask_expr.

| Fortran 95

* Masked ELSEWHERE statement
The following occurs:
1. m. becomes m,.
2. m, becomes m. .AND. (.NOT. mask_expr).
3. m becomes m. .AND. mask_expr.

| End of Fortran 95

* ELSEWHERE statement
The following occurs:

1. m, becomes m,. No new m, value is established.
* END WHERE statement

After the compiler executes an END WHERE statement, m, and m,, have the
values they had prior to the execution of the corresponding WHERE construct
statement.

. where_assignment_statement

The compiler assigns the values of the expr that correspond to the true values of
m, to the corresponding elements of the variable.

If a non-elemental function reference occurs in the expr or variable of a
where_assignment_statement or in a mask_expr, the compiler evaluates the function
without any masked control; that is, it fully evaluates all of the function’s
argument expressions and then it fully evaluates the function. If the result is an
array and the reference is not within the argument list of a non-elemental function,
the compiler selects elements corresponding to true values in m_ for use in
evaluating the expr, variable, or mask_expr.

If an elemental intrinsic operation or function reference occurs in the expr or
variable of a where_assignment_statement or in a mask_expr, and is not within the
argument list of a non-elemental function reference, the compiler performs the
operation or evaluates the function only for the elements corresponding to true
values in m..

Expressions and Assignment 107

If an array constructor appears in a where_assignment_statement or in a mask_expr,
the compiler evaluates the array constructor without any masked control and then
executes the where_assignment_statement or evaluates the mask_expr.

The execution of a function reference in the mask_expr of a WHERE statement is
allowed to affect entities in the where_assignment_statement. Execution of an END
WHERE has no effect.

The following example shows how control masks are updated. In this example,
mask1, mask2, mask3, and mask4 are conformable logical arrays, m. is the control
mask, and m,, is the pending control mask. The compiler evaluates each mask
expression once.

Sample code (with statement numbers shown in the comments):

WHERE (maskl) I WL
WHERE (mask2) W2 *
I W3 *
ELSEWHERE (mask3) ! W4 *
I W5 *
END WHERE 1 W6 *

ELSEWHERE (mask4) ! W7 *

I W8 *

ELSEWHERE 1 W9

I W10

END WHERE I Wil

Note: * Fortran 95

The compiler sets control and pending control masks as it executes each statement,
as shown below:

| Fortran 95

Statement W1
m. = maskl
m, = .NOT. maskl
Statement W2
m, = maskl .AND. (.NOT. mask?2)
m. = maskl .AND. mask2
Statement W4
m. = maskl .AND. (.NOT. mask2)
m, = maskl .AND. (.NOT. mask?2)
.AND. (.NOT. mask3)
m. = maskl .AND. (.NOT. mask2)
.AND. mask3
Statement W6
m. = maskl

C

m, = .NOT. maskl

| End of Fortran 95

Statement W7

m. = .NOT. maskl

m, = (.NOT. maskl) .AND. (.NOT.
mask4)

m. = (.NOT. maskl) .AND. mask4

108 XL Fortran Advanced Edition for Mac OS X: Language Reference

Statement W9

m. = (.NOT. maskl) .AND. (.NOT.
mask4)
Statement W11

m. =0
m, = 0
The compiler uses the values of the control masks set by statements W2, W4, W7,

and W9 when it executes the respective where_assignment_statements W3, W5, W8,
and W10.

Migration Tip:
Simplify logical evaluation of arrays

FORTRAN 77 source:
INTEGER A(10,10),B(10,10)

D0 I=1,10
D0 J=1,10
IF (A(1,J).LT.B(I,J)) A(I,J)=B(I,J)
END DO
END DO
END

Fortran 90 or Fortran 95 source:
INTEGER A(10,10),B(10,10)

WHERE (A.LT.B) A=B
END

Examples of the WHERE Construct

REAL, DIMENSION(10) :: A,B,C,D
WHERE (A>0.0)

A = LOG(A) Only the positive elements of A
are used in the LOG calculation.

B=A The mask uses the original array A
instead of the new array A.

C =A/ SUM(LOG(A)) ! A is evaluated by LOG, but

the resulting array is an
argument to a non-elemental
function. A1l elements in A will
be used in evaluating SUM.

END WHERE

WHERE (D>0.0)

C = CSHIFT(A, 1) CSHIFT applies to all elements in array A,
and the array element values of D determine
which CSHIFT expression determines the
corresponding element values of C.
ELSEWHERE

C = CSHIFT(A, 2)

END WHERE
END

Expressions and Assignment 109

| Fortran 95

The following example shows an array constructor in a WHERE construct
statement and in a masked ELSEWHERE mask_expr:

CALL SUB((/ 0, -4, 3, 6, 11, -2, 7, 14 /))

CONTAINS
SUBROUTINE SUB(ARR)
INTEGER ARR(:)
INTEGER N

N = SIZE(ARR)

! Data in array ARR at this point:
!

'A=]0-43611-27 14 |

WHERE (ARR < 0)
ARR = 0

ELSEWHERE (ARR < ARR((/(N-I, I=0, N-1)/)))
ARR = 2

END WHERE

! Data in array ARR at this point:
|

l!A=]20321107 14 |

END SUBROUTINE
END

The following example shows a nested WHERE construct statement and masked
ELSEWHERE statement with a where_construct_name:

INTEGER :: A(10, 10), B(10, 10)

OUTERWHERE: WHERE (A < 10)
INNERWHERE: WHERE (A < 0)
B=20
ELSEWHERE (A < 5) INNERWHERE
B=5
ELSEWHERE INNERWHERE
B =10
END WHERE INNERWHERE
ELSEWHERE OUTERWHERE
B=A
END WHERE OUTERWHERE

| End of Fortran 95

FORALL Construct

| Fortran 95

The FORALL construct performs assignment to groups of subobjects, especially
array elements.

Unlike the WHERE construct, FORALL performs assignment to array elements,
array sections, and substrings. Also, each assignment within a FORALL construct
need not be conformable with the previous one. The FORALL construct can
contain nested FORALL statements, FORALL constructs, WHERE statements, and

110 XL Fortran Advanced Edition for Mac OS X: Language Reference

WHERE constructs.

| End of Fortran 95

| IBM Extension

The INDEPENDENT directive specifies that each operation in the FORALL
statement or construct can be executed in any order without affecting the
semantics of the program. For more information on the INDEPENDENT directive,
see ["'INDEPENDENT” on page 406 .|

| End of IBM Extension

| Fortran 95

»—FORALL construct_statement

\4
A

»>—forall_body

A\
A

»>—END_FORALL_statement ><

FORALL_construct_statement
See ['FORALL (Construct)” on page 292| for syntax details.

END_FORALL_statement
See ["'END (Construct)” on page 277|for syntax details.

forall_body
is one or more of the following statements or constructs:
forall_assignment
WHERE statement (see [“WHERE” on page 390)
WHERE construct (see ["WHERE Construct” on page 104)
FORALL statement (see ["FORALL” on page 289
FORALL construct

forall_assignment
is either assignment_statement or pointer_assignment_statement

Any procedures that are referenced in a forall_body (including one referenced by a
defined operation or defined assignment) must be pure.

If a FORALL statement or construct is nested within a FORALL construct, the
inner FORALL statement or construct cannot redefine any index_name used in the
outer FORALL construct.

Although no atomic object can be assigned to, or have its association status
changed in the same statement more than once, different assignment statements
within the same FORALL construct can redefine or reassociate an atomic object.
Also, each WHERE statement and assignment statement within a WHERE
construct must follow these restrictions.

Expressions and Assignment 111

If a FORALL_construct_name is specified, it must appear in both the FORALL
statement and the END FORALL statement. Neither the END FORALL statement
nor any statement within the FORALL construct can be a branch target statement.

| End of Fortran 95 |

Interpreting the FORALL Construct

Fortran 95 |

1. From the FORALL Construct statement, evaluate the subscript and stride
expressions for each forall_triplet_spec in any order. All possible pairings of
index_name values form the set of combinations. For example, given the
statement:

FORALL (I=1:3,J=4:5)

The set of combinations of I and J is:
{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}

The -1 and -qnozerosize compiler options do not affect this step.

2. Evaluate the scalar_mask_expr (from the FORALL Construct statement) for the
set of combinations, in any order, producing a set of active combinations (those
that evaluated to .TRUE.). For example, if the mask (I+J.NE.6) is applied to the
above set, the set of active combinations is:

{(1,4),(2,5),(3,4),(3,5)}
3. Execute each forall_body statement or construct in order of appearance. For the

set of active combinations, each statement or construct is executed completely
as follows:

assignment_statement

Evaluate, in any order, all values in the right-hand side expression and
all subscripts, strides, and substring bounds in the left-hand side
variable for all active combinations of index_name values.

Assign, in any order, the computed expression values to the
corresponding variable entities for all active combinations of index_name
values.
INTEGER, DIMENSION(50) :: A,B,C
INTEGER :: X,I1=2,J=49
FORALL (X=I:J)
A(X)=B(X)+C(X)
C(X)=B(X)-A(X) ! A1l these assignments are performed after the
I assignments in the preceding statement
END FORALL
END

pointer_assignment_statement

Determine, in any order, what will be the targets of the pointer
assignment, and evaluate all subscripts, strides, and substring bounds
in the pointer for all active combinations of index_name values. If a
target is not a pointer, determination of the target does not include
evaluation of its value. Pointer assignment never requires the value of
the righthand side to be determined.

Associate, in any order, all targets with the corresponding pointer
entities for all active combinations of index_name values.

WHERE statement or construct

112 XL Fortran Advanced Edition for Mac OS X: Language Reference

Evaluate, in any order, the control mask and pending control mask for
each WHERE statement, WHERE construct statement, ELSEWHERE
statement, or masked ELSEWHERE statement each active combination
of index_name values, producing a refined set of active combinations for
that statement, as described in [‘Interpreting Masked Array|
[Assignments” on page 106.|For each active combination, the compiler
executes the assignment(s) of the WHERE statement, WHERE construct
statement, or masked ELSEWHERE statement for those values of the
control mask that are true for that active combination. The compiler
executes each statement in a WHERE construct in order, as described
previously.
INTEGER I1(100,10), J(100), X
FORALL (X=1:100, J(X)>0)
WHERE (I(X,:)<0)
I(X,:)=0 ! Assigns O to an element of I along row X
! only if element value is less than 0 and value

|
I of element in corresponding column of J is
! greater than 0.

ELSEWHERE
I(X,:)=1
END WHERE
END FORALL
END

FORALL statement or construct

Evaluate, in any order, the subscript and stride expressions in the
forall_triplet_spec_list for the active combinations of the outer FORALL
statement or construct. The valid combinations are the Cartesian
product of combination sets of the inner and outer FORALL constructs.
The scalar_mask_expr determines the active combinations for the inner
FORALL construct. Statements and constructs for these active
combinations are executed.

! Same as FORALL (I=1:100,J=1:100,I.NE.J) A(I,J)=A(J,I)

INTEGER A(100,100)
OUTER: FORALL (I=1:100)
INNER: FORALL (J=1:100,I.NE.J)
A(1,d)=A(J,1)
END FORALL INNER
END FORALL OUTER
END

| End of Fortran 95

Pointer Assignment

The pointer assignment statement causes a pointer to become associated with a
target or causes the pointer’s association status to become disassociated or
undefined.

»>—pointer_object— => —target »><

target is a variable or expression. It must have the same type, type parameters
and rank as pointer_object.

pointer_object must have the POINTER attribute.

Expressions and Assignment 113

A target that is an expression must yield a value that has the POINTER attribute.
A target that is a variable must have the TARGET attribute (or be a subobject of
such an object) or the POINTER attribute. A target must not be an array section
with a vector subscript, nor can it be a whole assumed-size array.

The size, bounds, and shape of the target of a disassociated array pointer are
undefined. No part of such an array can be defined or referenced, although the
array can be the argument of an intrinsic inquiry function that is inquiring about
association status, argument presence, or a property of the type or type
parameters.

| IBM Extension

A pointer of type byte can only be associated with a target of type byte,
INTEGER(1), or LOGICAL().

| End of IBM Extension

Any previous association between pointer_object and a target is broken. If target is
not a pointer, pointer_object becomes associated with target. If target is itself an
associated pointer, pointer_object is associated with the target of target. If target is a
pointer with an association status of disassociated or undefined, pointer_object
acquires the same status. If target of a pointer assignment is an allocatable object, it
must be allocated.

Pointer assignment for a pointer structure component can also occur via execution
of a derived-type intrinsic assignment statement or a defined assignment
statement.

During pointer assignment of an array pointer, the lower bound of each dimension
is the result of the LBOUND intrinsic function applied to the corresponding
dimension of the target. For an array section or array expression that is not a
whole array or a structure component, the lower bound is 1. The upper bound of
each dimension is the result of the UBOUND intrinsic function applied to the
corresponding dimension of the target.

Related Information:

* See ["ALLOCATE” on page 227 for an alternative form of associating a pointer
with a target.

* See [‘Pointers as Dummy Arguments” on page 163| for details on using pointers
in procedure references.

Examples of Pointer Assignment

TYPE T
INTEGER, POINTER :: COMP_PTR

ENDTYPE T

TYPE(T) T_VAR

INTEGER, POINTER :: P,Q,R

INTEGER, POINTER :: ARR(:)

BYTE, POINTER :: BYTE_PTR

LOGICAL(1), POINTER :: LOG_PTR

INTEGER, TARGET :: MYVAR

INTEGER, TARGET :: DARG(1:5)

P => MYVAR I P points to MYVAR
Q=>"P I Q points to MYVAR
NULLIFY (R) I R is disassociated
Q=>R 1 Q is disassociated

114 XL Fortran Advanced Edition for Mac OS X: Language Reference

T VAR = T(P) ! T_VAR%COMP_PTR points to MYVAR
ARR => DARG(1:3)

BYTE_PTR => LOG_PTR

END

Integer Pointer Assighment

| IBM Extension

Integer pointer variables can be:
¢ Used in integer expressions
* Assigned values as absolute addresses

* Assigned the address of a variable using the LOC intrinsic function. (Objects of
derived type and structure components must be of sequence-derived type when
used with the LOC intrinsic function.)

Note that the XL Fortran compiler uses 1-byte arithmetic for integer pointers in
assignment statements.

Example of Integer Pointer Assignment

INTEGER INT_TEMPLATE

POINTER (P,INT_TEMPLATE)

INTEGER MY_ARRAY(10)

DATA MY_ARRAY/1,2,3,4,5,6,7,8,9,10/
INTEGER, PARAMETER :: WORDSIZE=4

P = LOC(MY_ARRAY)

PRINT =, INT_TEMPLATE Prints '1'

]
P =P+ 4 ! Add 4 to reach next element
! because arithmetic is byte-based

PRINT =, INT_TEMPLATE I Prints '2'
P = LOC(MY_ARRAY)
DO I = 1,10

PRINT =, INT_TEMPLATE

P = P + WORDSIZE ! Parameterized arithmetic is suggested
END DO
END

End of IBM Extension

Expressions and Assignment 115

116 XL Fortran Advanced Edition for Mac OS X: Language Reference

Control Structures

This section describes:
+ |“Statement Blocks”|
 |“IF Construct”
» |“CASE Construct” on page 119
* |”DO Construct” on page 121
+ ["DO WHILE Construct” on page 125
« |“Branching” on page 126

You can control your program’s execution sequence by constructs containing
statement blocks and other executable statements that can alter the normal
execution sequence, as defined under [“Order of Statements and Execution]
[Sequence” on page 19] The construct descriptions in this section do not provide

detailed syntax of any construct statements; rather, references are made to the
section.

If a construct is contained in another construct, it must be wholly contained
(nested) within that construct. If a statement specifies a construct name, it belongs
to that construct; otherwise, it belongs to the innermost construct in which it
appears.

Statement Blocks

A statement block consists of a sequence of zero or more executable statements,
executable constructs, [FORMAT]|statements, or [DATA| statements embedded in
another executable construct and are treated as a single unit.

Within an executable program, it is not permitted to transfer control from outside
of the statement block to within it. It is permitted to transfer control within the
statement block, or from within the statement block to outside the block. For
example, in a statement block, you can have a statement with a statement label

and a [GO TO|statement using that label.

IF Construct

The IF construct selects no more than one of its statement blocks for execution.

© Copyright IBM Corp. 1990, 2003 117

v
A

»—Block_IF_statement

v
A

»>—statement_block

\¢ELSIE_IF_bZock»\J

|—I:'LSE_block—|

y
v
A

v
A

»»—END IF statement

Block_IF_statement
See [“IF (Block)” on page 304 for syntax details.

END _IF_statement
See ["END (Construct)” on page 277 for syntax details.

ELSE_IF block

»>—FEISE_IF_statement »<

»>—statement_block ><

ELSE_IF_statement
See ["ELSE IF” on page 273|for syntax details.

ELSE block

v
A

»>—F|SE_statement

»>—statement_block <

ELSE_statement
See ["ELSE” on page 273|for syntax details.

The scalar logical expressions in an IF construct (that is, the block IF and ELSE IF
statements) are evaluated in the order of their appearance until a true value, an
ELSE statement, or an END IF statement is found:

118 XL Fortran Advanced Edition for Mac OS X: Language Reference

* If a true value or an ELSE statement is found, the statement block immediately
following executes, and the IF construct is complete. The scalar logical
expressions in any remaining ELSE IF statements or ELSE statements of the IF
construct are not evaluated.

e If an END IF statement is found, no statement blocks execute, and the IF
construct is complete.

If the IF construct name is specified, it must appear on the IF statement and END
IF statement, and optionally on any ELSE IF or ELSE statements.

Example
! Get a record (containing a command) from the terminal
DO
WHICHC: IF (CMD .EQ. 'RETRY') THEN ! named IF construct
IF (LIMIT .GT. FIVE) THEN ! nested IF construct
! Print retry Timit exceeded
CALL STOP
ELSE
CALL RETRY
END IF
ELSE IF (CMD .EQ. 'STOP') THEN WHICHC ! ELSE IF blocks
CALL STOP
ELSE IF (CMD .EQ. 'ABORT') THEN
CALL ABORT
ELSE WHICHC I ELSE block

! Print unrecognized command
END IF WHICHC
END DO
END

CASE Construct

The CASE construct has a concise syntax for selecting, at most, one of a number of
statement blocks for execution. The case selector of each CASE statement is
compared to the expression of the SELECT CASE statement.

»>—SELECT_CASE_statement ><

y
Yy
A

Y _CASE statement_block

»>—END_SELECT _statement ><

SELECT_CASE_statement
defines the case expression that is to be evaluated. See [“SELECT CASE” onl

for syntax details.

END_SELECT _statement
terminates the CASE construct. See [“END (Construct)” on page 277| for
syntax details.

Control Structures 119

CASE_statement_block

»>—CASE_statement

»>—statement _block

CASE_statement
defines the case selector, which is a value, set of values, or default case, for
which the subsequent statement block is executed. See [“CASE” on pagd

for syntax details.

In the construct, each case value must be of the same type as the case expression.

The CASE construct executes as follows:
1. The case expression is evaluated. The resulting value is the case index.
2. The case index is compared to the case_selector of each CASE statement.

3. If a match occurs, the statement block associated with that CASE statement is
executed. No statement block is executed if no match occurs. (See ["CASE” o

page 238
4. Execution of the construct is complete and control is transferred to the
statement after the END SELECT statement.

A CASE construct contains zero or more CASE statements that can each specify a
value range, although the value ranges specified by the CASE statements cannot
overlap.

A default case_selector can be specified by one of the CASE statements. A default
CASE_statement_block can appear anywhere in the CASE construct; it can appear at
the beginning or end, or among the other blocks.

If a construct name is specified, it must appear on the SELECT CASE statement
and END SELECT statement, and optionally on any CASE statements.

You can only branch to the END SELECT statement from within the CASE
construct. A CASE statement cannot be a branch target.

120 XL Fortran Advanced Edition for Mac OS X: Language Reference

Migration Tip:
Use CASE in place of block IFs.

FORTRAN 77 source

IF (I .EQ.3) THEN
CALL SUBA()

ELSE IF (I.EQ. 5) THEN
CALL SUBB()

ELSE IF (I .EQ. 6) THEN
CALL SUBC()

ELSE
CALL OTHERSUB()

ENDIF

END

Fortran 90 or Fortran 95 source

SELECTCASE(I)
CASE(3)
CALL SUBA()
CASE (5)
CALL SUBB()
CASE(6)
CALL SUBC()
CASE DEFAULT
CALL OTHERSUB()
END SELECT
END

Examples
ZERO: SELECT CASE(N)

CASE DEFAULT ZERO

OTHER: SELECT CASE(N) ! start of CASE construct OTHER

CASE(:-1)

SIGNUM = -1
CASE(1:) OTHER
SIGNUM =1

END SELECT OTHER

CASE (0)
SIGNUM = 0

END SELECT ZERO
END

I this statement executed when n=-1

I end of CASE construct OTHER

DO Construct

The DO construct specifies the repeated execution of a statement block. Such a
repeated block is called a loop.

The iteration count of a loop can be determined at the beginning of execution of

the DO construct, unless it is indefinite.

You can curtail a specific iteration with the CYCLE statement, and the EXIT

statement terminates the loop.

Control Structures

121

»»—P0_statement

A\
A

»>—statement_block >

»_EEND DO _statement ><
terminal_statemen t—l

DO_statement See ['DO” on page 263|for syntax details

END_DO_statement
See [“'END (Construct)” on page 277 for syntax details

terminal_statement
is a statement that terminates the DO construct. See the description
below.

If you specify a DO construct name on the DO statement, you must terminate the
construct with an END DO statement with the same construct name. Conversely, if
you do not specify a DO construct name on the DO statement, and you terminate
the DO construct with an END DO statement, you must not have a DO construct
name on the END DO statement.

The Terminal Statement

The terminal statement must follow the DO statement and must be executable. See
[“Statements and Attributes” on page 223|for a listing of statements that can be
used as the terminal statement. If the terminal statement of a DO construct is a
statement, it can contain any executable statement except those
statements to which the restrictions on the logical IF statement apply.

If you specify a statement label in the DO statement, you must terminate the DO
construct with a statement that is labeled with that statement label.

You can terminate a labeled DO statement with an statement that is
labeled with that statement label, but you cannot terminate it with an unlabeled
END DO statement. If you do not specify a label in the DO statement, you must
terminate the DO construct with an END DO statement.

Nested, labeled DO and DO WHILE constructs can share the same terminal
statement if the terminal statement is labeled, and if it is not an [END DO
statement.

Range of a DO Construct

The range of a DO construct consists of all the executable statements following the
DO statement, up to and including the terminal statement. In addition to the rules
governing the range of constructs, you can only transfer control to a shared
terminal statement from the innermost sharing DO construct.

Active and Inactive DO Constructs

A DO construct is either active or inactive. Initially inactive, a DO construct
becomes active only when its DO statement is executed. Once active, the DO
construct becomes inactive only when:

e Its iteration count becomes zero.

122 XL Fortran Advanced Edition for Mac OS X: Language Reference

* A RETURN statement occurs within the range of the DO construct.

* Control is transferred to a statement in the same scoping unit but outside the
range of the DO construct.

* A subroutine invoked from within the DO construct returns, through an
alternate return specifier, to a statement that is outside the range of the DO
construct.

e An EXIT statement that belongs to the DO construct executes.

* An EXIT statement or a CYCLE statement that is within the range of the DO
construct, but belongs to an outer DO or DO WHILE construct, executes.

* A STOP statement executes or the program stops for any other reason.

When a DO construct becomes inactive, the DO variable retains the last value
assigned to it.

Executing a DO Statement
An infinite DO loops indefinitely.

If the loop is not an infinite DO, the DO statement includes an initial parameter, a
terminal parameter, and an optional increment.

1. The initial parameter, m,, the terminal parameter, m,, and the increment, m;, are
established by evaluating the DO statement expressions (a_exprl, a_expr2, and
a_expr3, respectively). Evaluation includes, if necessary, conversion to the type
of the DO variable according to the rules for arithmetic conversion. (See
[“Arithmetic Conversion” on page 103.) If you do not specify a_expr3, m; has a
value of 1. m; must not have a value of zero.

2. The DO variable becomes defined with the value of the initial parameter (1m1,).
3. The iteration count is established, determined by the expression:
MAX (INT ((m, - m, + m;) / m;), 0)

Note that the iteration count is 0 whenever:
m, >m, and my > 0, or

m, <m, and my < 0

The iteration count cannot be calculated if the DO variable is missing. This is
referred to as an infinite DO construct.

| IBM Extension |

The iteration count cannot exceed 2**31 - 1 for integer variables of kind 1, 2, or 4,
and cannot exceed 2*¥63 - 1 for integer variables of kind 8. The count becomes
undefined if an overflow or underflow situation arises during the calculation.

| End of IBM Extension |

At the completion of the DO statement, loop control processing begins.

Loop Control Processing

Loop control processing determines if further execution of the range of the DO
construct is required. The iteration count is tested. If the count is not zero, the first
statement in the range of the DO construct begins execution. If the iteration count
is zero, the DO construct becomes inactive. If, as a result, all of the DO constructs
sharing the terminal statement of this DO construct are inactive, normal execution
continues with the execution of the next executable statement following the

Control Structures 123

terminal statement. However, if some of the DO constructs sharing the terminal
statement are active, execution continues with incrementation processing of the
innermost active DO construct.

Execution of the Range

Statements that are part of the statement block are in the range of the DO
construct. They are executed until the terminal statement is reached. Except by
incrementation processing, you cannot redefine the DO variable, nor can it become
undefined during execution of the range of the DO construct.

Terminal Statement Execution

Execution of the terminal statement occurs as a result of the normal execution
sequence, or as a result of transfer of control, subject to the restriction that you
cannot transfer control into the range of a DO construct from outside the range.
Unless execution of the terminal statement results in a transfer of control,
execution continues with incrementation processing.

Incrementation Processing

1. The DO variable, the iteration count, and the increment of the active DO
construct whose DO statement was most recently executed, are selected for
processing.

2. The value of the DO variable is increased by the value of ;.
3. The iteration count is decreased by 1.

4. Execution continues with loop control processing of the same DO construct
whose iteration count was decremented.

Migration Tip:
* Use EXIT, CYCLE, and infinite DO statements instead of a GOTO statement.

FORTRAN 77 source

I=0
J=20
20 CONTINUE
I=1+1
J=J+1
PRINT =, I

IF (I.GT.4) GOTO 10 ! Exiting Toop
IF (J.GT.3) GOTO 20 ! Iterate Toop immediately
I=1+2
GOTO 20
10 CONTINUE
END

Fortran 90 or Fortran 95 source

I1=0;J=0
DO
I I+1
J J+1
PRINT *, I
IF (I.GT.4) EXIT
IF (J.GT.3) CYCLE

I=1+2
END DO
END
Examples:
INTEGER :: SUM=0
OUTER: DO
INNER: DO

124 XL Fortran Advanced Edition for Mac OS X: Language Reference

READ (5,%) J
IF (J.LE.I) THEN
PRINT *, 'VALUE MUST BE GREATER THAN ', I
CYCLE INNER
END IF
SUM=SUM+J
IF (SUM.GT.500) EXIT OUTER
IF (SUM.GT.100) EXIT INNER
END DO INNER
SUM=SUM+1
1=1+10
END DO OUTER
PRINT %, 'SUM =',SUM
END

DO WHILE Construct

The DO WHILE construct specifies the repeated execution of a statement block for
as long as the scalar logical expression specified in the DO WHILE statement is
true. You can curtail a specific iteration with the CYCLE statement, and the EXIT
statement terminates the loop.

»»—D0 WHILE statement »<

»>—statement_block

»—EEND_DO_statement _|
terminal_statement

A\
A

DO_WHILE_statement
See ['DO WHILE” on page 265 for syntax details

END_DO_statement
See ['END (Construct)” on page 277 for syntax details

terminal_stmt is a statement that terminates the DO WHILE construct. See
[Terminal Statement” on page 122 for details.

The rules discussed earlier concerning DO construct names and ranges, active and
inactive DO constructs, and terminal statements also apply to the DO WHILE
construct.

Example

I=10

TWO DIGIT: DO WHILE ((I.GE.10).AND.(I.LE.99))
J=J+I
READ (5,*) I

END DO TWO_DIGIT

END

Control Structures 125

Branching

You can also alter the normal execution sequence by branching. A branch transfers
control from one statement to a labeled branch target statement in the same
scoping unit. A branch target statement can be any executable statement except a
CASE, ELSE, or ELSE IF statement.

The following statements can be used for branching;:
* |Assigned GO TO|
transfers program control to an executable statement, whose statement label is
designated in an ASSIGN statement. See [“GO TO (Assigned)” on page 301| for
syntax details.
* |Computed GO TO|
transfers control to possibly one of several executable statements. See
(Computed)” on page 302| for syntax details.
e [Unconditional GO ﬂ
transfers control to a specified executable statement. See
[(Unconditional)” on page 303| for syntax details.

e |Arithmetic I

transfers control to one of three executable statements, depending on the
evaluation of an arithmetic expression. See [“IF (Arithmetic)” on page 304] for
syntax details.

The following input/output specifiers can also be used for branching:
* the END= end-of-file specifier

transfers control to a specified executable statement if an endfile record is
encountered (and no error occurs) in a READ statement.

* the ERR= error specifier

transfers control to a specified executable statement in the case of an error. You
can specify this specifier in the BACKSPACE, ENDFILE, REWIND, CLOSE,
OPEN, READ, WRITE, and INQUIRE statements.

* the EOR= end-or-record specifier

transfers control to a specified executable statement if an end-of-record condition
is encountered (and no error occurs) in a READ statement.

126 XL Fortran Advanced Edition for Mac OS X: Language Reference

Program Units and Procedures

This chapter describes:

. ”Scope’:|

» |“Association” on page 131|

* [“Program Units, Procedures, and Subprograms” on page 134

* |“Interface Blocks” on page 138

» |“Generic Interface Blocks” on page 141|

+ [“Main Program” on page 145

* |"Modules” on page 146

* [“Block Data Program Unit” on page 149

+ |[“Function and Subroutine Subprograms” on page 150|

* |“Intrinsic Procedures” on page 152|

+ |“Arguments” on page 153

* [“Argument Association” on page 156|

+ |[“Recursion” on page 166|

* F 95 [“Pure Procedures” on page 167[o5 4
* p 95 |[“Elemental Procedures” on page 169 Fs5 4

Scope

A program unit consists of a set of nonoverlapping scoping units. A scoping unit is
that portion of a program unit that has its own scope boundaries. It is one of the
following:

* A derived-type definition

* A procedure interface body (not including any derived-type definitions and
interface bodies within it)

e A program unit, module subprogram, or internal subprogram (not including
derived-type definitions, interface bodies, module subprograms, and internal
subprograms).

A host scoping unit is the scoping unit that immediately surrounds another scoping
unit. For example, in the following diagram, the host scoping unit of the internal
function C is the scoping unit of the main program A. Host association is the
method by which an internal subprogram, module subprogram, or derived-type
definition accesses names from its host.

© Copyright IBM Corp. 1990, 2003 127

PROGRAM A -
INTEGER A1
CONTAINS
47
SUBROUTINE B scope of
REAL B1 variable B1 scope of
END SUBROUTINE B variable A1
+— (not including
+— scope of B1
FUNCTION C () scope of and C1)
REAL C1 variable C1
END FUNCTION C
47
END PROGRAM A

A

Entities that have scope are:

* A name (see below)

* A label (local entity)

* An external input/output unit number (global entity)

* An operator symbol. Intrinsic operators are global entities, while defined
operators are local entities.

* An assignment symbol (global entity)
If the scope is an executable program, the entity is called a global entity. If the
scope is a scoping unit, the entity is called a local entity. If the scope is a statement

or part of a statement, the entity is called a statement entity. If the scope is
a construct, the entity is called a construct entity[re5 4

The Scope of a Name
Global Entity

| IBM Extension

Global entities are program units, external procedures and common blocks.

| End of IBM Extension

If a name identifies a global entity, it cannot be used to identify any other global
entity in the same executable program.

See [Conventions for XL Fortran External Names|in the [User’s Guide| for details on
restrictions on names of global entities.

Local Entity
Entities of the following classes are local entities of the scoping unit in which they
are defined:

1. Named variables that are not statement entities, module procedures, named
constants, derived-type definitions, construct names, generic identifiers,
statement functions, internal subprograms, dummy procedures, intrinsic
procedures, or namelist group names.

2. Components of a derived-type definition (each derived-type definition has its
own class).

A component name has the same scope as the type of which it is a component.
It may appear only within a component designator of a structure of that type.

128 XL Fortran Advanced Edition for Mac OS X: Language Reference

If the derived type is defined in a module and contains the PRIVATE
statement, the type and its components are accessible in any of the defining
module’s subprograms by host association. If the accessing scoping unit
accesses this type by use association, that scoping unit (and any scoping unit
that accesses the entities of that scoping unit by host association) can access the
derived-type definition but not its components.

3. Argument keywords (in a separate class for each procedure with an explicit
interface).

A dummy argument name in an internal procedure, module procedure, or
procedure interface block has a scope as an argument keyword of the scoping
unit of its host. As an argument keyword, it may appear only in a procedure
reference for the procedure of which it is a dummy argument. If the procedure
or procedure interface block is accessible in another scoping unit by use
association or host association, the argument keyword is accessible for
procedure references for that procedure in that scoping unit.

In a scoping unit, a name that identifies a local entity of one class may be used to
identify a local entity of another class. Such a name must not be used to identify
another local entity of the same class, except in the case of generic names. A name
that identifies a global entity in a scoping unit cannot be used to identify a local
entity of Class 1 in that scoping unit, except for a common block name or the
name of an external function. Components of a record structure are local entities of
class 2. A separate class exists for each type.

A name declared to be a derived type using a record structure declaration may
have the same name as another local entity of class 1 of that scoping unit that is
not a derived type. In this case, the structure constructor for that type is not
available in that scope. Similarly, a local entity of class 1 is accessible via host
association or use association, even if there is another local entity of class 1
accessible in that scope, if

* one of the two entities is a derived type and the other is not; and

* in the case of host association, the derived type is accessible via host association.
For example, given a module M, a program unit P, and an internal subprogram
or module subprogram S nested in P, if you have an entity named T1 declared
in M that is accessed by use association in P (or in S), you can declare another
entity in P (or in S, respectively) with the same name T1, so long as one of the
two is a derived type. If you have an entity named T2 accessible in P, and an
entity named T2 declared in S, then the T2 accessible in P is accessible in S if the
T2 in P is a derived type. If the T2 in P was not a derived type, it would not be
accessible in S if S declared another T2 (of derived type or not).

The structure constructor for that type will not be available in that scope. A local
entity of class 1 in a scope that has the same name as a derived type accessible in
that scope must be explicitly declared in a declaration statement in that scope.

If two local entities of class 1, one of which is a derived type, are accessible in a
scoping unit, any PUBLIC or PRIVATE statement that specifies the name of the
entities applies to both entities. If the name of the entities is specified in a
VOLATILE statement, the entity or entities declared in that scope have the volatile
attribute. If the two entities are public entities of a module, any rename on a USE
statement that references the module and specifies the names of the entities as the
use_name applies to both entities.

A common block name in a scoping unit can be the name of any local entity other
than a named constant or intrinsic procedure. The name is recognized as the

Program Units and Procedures 129

common block entity only when the name is delimited by slashes in a COMMON,
VOLATILE, or SAVE statement. If it is not, the name identifies the local entity. An
intrinsic procedure name can be the name of a common block in a scoping unit
that does not reference the intrinsic procedure. In this case, the intrinsic procedure
name is not accessible.

An external function name can also be the function result name. This is the only
way that an external function name can also be a local entity.

If a scoping unit contains a local entity of Class 1 with the same name as an
intrinsic procedure, the intrinsic procedure is not accessible in that scoping unit.

An interface block generic name can be the same as any of the procedure names in
the interface block, or the same as any accessible generic name. It can be the same

as any generic intrinsic procedure. See ['Resolution of Procedure References” on|

i for details.
Statement and Construct Entities

Statement Entities: The following items are statement entities:

* Name of a statement function dummy argument.
SCOPE: Scope of the statement in which it appears.

* Name of a variable that appears as the DO variable of an implied-DO in a
DATA statement or array constructor.
SCOPE: Scope of the implied-DO list.

Except for a common block name or scalar variable name, the name of a global
entity or local entity of class 1 that is accessible in the scoping unit of a statement
or construct must not be the name of a statement or construct entity of that
statement or construct. Within the scope of a statement or construct entity, another
statement or construct entity must not have the same name.

The name of a variable that appears as a dummy argument in a statement function
statement has a scope of the statement in which it appears. It has the type and
type parameters that it would have if it were the name of a variable in the scoping
unit that includes the statement function.

If the name of a global or local entity accessible in the scoping unit of a statement
or construct is the same as the name of a statement or construct entity in that
statement or construct, the name is interpreted within the scope of the statement or
construct entity as that of the statement or construct entity. Elsewhere in the
scoping unit, including parts of the statement or construct outside the scope of the
statement or construct entity, the name is interpreted as that of the global or local
entity.

If a statement or construct entity has the same name as an accessible name that
denotes a variable, constant, or function, the statement or construct entity has the
same type and type parameters as the variable, constant or function. Otherwise,
the type of the statement or construct entity is determined through the implicit
typing rules in effect. If the statement entity is the DO variable of an implied-DO
in a DATA statement, the variable cannot have the same name as an accessible
named constant.

130 XL Fortran Advanced Edition for Mac OS X: Language Reference

Fortran 95 Statement and Construct Entity:

| Fortran 95

The following is a Fortran 95 statement and construct entity:

e Name of a variable that appears as an index_name in a FORALL statement or
FORALL construct.
SCOPE: Scope of the FORALL statement or construct.

The only attributes held by the FORALL statement or construct entity are the type
and type parameters that it would have if it were the name of a variable in the
scoping unit that includes the FORALL. It is type integer.

Except for a common block name or a scalar variable name, a name that identifies
a global entity or a local entity of class 1, accessible in the scoping unit of a
FORALL statement or construct, must not be the same as the index_name. Within
the scope of a FORALL construct, a nested FORALL statement or FORALL
construct must not have the same index_name.

If the name of a global or local entity accessible in the scoping unit of a FORALL
statement or construct is the same as the index_name, the name is interpreted
within the scope of the FORALL statement or construct as that of the index_name.
Elsewhere in the scoping unit, the name is interpreted as that of the global or local
entity.

| End of Fortran 95 |

Association

Association exists if the same data can be identified with different names in the
same scoping unit, or with the same name or different names in different scoping
units of the same executable program.

Host Association

Host association allows an internal subprogram, module subprogram, or
derived-type definition to access named entities that exist in its host. Accessed
entities have the same attributes and are known by the same name (if available) as
they are in the host. The entities are named objects, derived-type definitions,
namelist groups, interface blocks and procedures.

A name that is specified with the EXTERNAL attribute is a global name. Any
entity in the host scoping unit that has this name as its nongeneric name is
inaccessible by that name and by host association.

The following list of entities are local within a scoping unit when declared or
initialized in that scoping unit:

* A variable name in a COMMON statement or initialized in a DATA statement
* An array name in a DIMENSION statement

* A name of a derived type

* An object name in a type declaration, EQUIVALENCE, POINTER,
ALLOCATABLE, SAVE, TARGET, AUTOMATIC, integer POINTER, STATIC,
or VOLATILE statement

¢ A named constant in a PARAMETER statement
* A namelist group name in a NAMELIST statement

Program Units and Procedures 131

* A generic interface name or a defined operator
* An intrinsic procedure name in an INTRINSIC statement

e A function name in a FUNCTION statement, statement function statement, or
type declaration statement

e A result name in a FUNCTION statement or an ENTRY statement
¢ A subroutine name in a SUBROUTINE statement
* An entry name in an ENTRY statement

* A dummy argument name in a FUNCTION, SUBROUTINE, ENTRY, or
statement function statement

* The name of a named construct
Entities that are local to a subprogram are not accessible in the host scoping unit.

A local entity must not be referenced or defined before the DATA statement when:

1. An entity is local to a scoping unit only because it is initialized in a DATA
statement, and

2. An entity in the host has the same name as this local entity.

If a derived-type name of a host is inaccessible, structures of that type or
subobjects of such structures are still accessible.

If a subprogram gains access to a pointer (or integer pointer) by host association,
the pointer association that exists at the time the subprogram is invoked remains
current within the subprogram. This pointer association can be changed within the
subprogram. The pointer association remains current when the procedure finishes
executing, except when this causes the pointer to become undefined, in which case
the association status of the host-associated pointer becomes undefined.

An interface body does not access named entities through host association,
although it can access entities by use association.

The host scoping unit of an internal or module subprogram can contain the same
use-associated entities.

Example of Host Association

SUBROUTINE MYSUB
TYPE DATES ! Define DATES
INTEGER START
INTEGER END
END TYPE DATES
CONTAINS
INTEGER FUNCTION MYFUNC (PNAME)
TYPE PLANTS
TYPE (DATES) LIFESPAN ! Host association of DATES
CHARACTER(10) SPECIES
INTEGER PHOTOPER
END TYPE PLANTS
END FUNCTION MYFUNC
END SUBROUTINE MYSUB

Use Association

Use association occurs when a scoping unit accesses the entities of a module with
the USE statement. Use-associated entities can be renamed for use in the local
scoping unit. The association is in effect for the duration of the executable
program. See [“USE” on page 384|for details.

132 XL Fortran Advanced Edition for Mac OS X: Language Reference

MODULE M
CONTAINS
SUBROUTINE PRINTCHAR(X)
CHARACTER(20) X
PRINT *, X
END SUBROUTINE
END MODULE
PROGRAM MAIN
USE M ! Accesses public entities of module M
CHARACTER(20) :: NAME='George'
CALL PRINTCHAR(NAME) ! Calls PRINTCHAR from module M
END

Pointer Association

A target that is associated with a pointer can be referenced by a reference to the
pointer. This is called pointer association.

A pointer always has an association status:

Associated
¢ The ALLOCATE statement successfully allocates the pointer, which has
not been subsequently disassociated or undefined.
ALLOCATE (P(3))
* The pointer is pointer-assigned to a target that is currently associated or
has the TARGET attribute and, if allocatable, is currently allocated.
P=>T

Disassociated

* The pointer is nullified by a NULLIFY statement or by the -qinit=f90ptr
option. See [-qinit|in the [User’s Guidel
NULLIFY (P)

* The pointer is successfully deallocated.
DEALLOCATE (P)

* The pointer is pointer-assigned to a disassociated pointer.
NULLIFY (Q); P => Q

Undefined

* Initially (unless the -qinit=f90ptr option is specified)

* If its target was never allocated.

* If its target was deallocated other than through the pointer.
POINTER P(:), Q(:)
ALLOCATE (P(3))
Q=>P
DEALLOCATE (Q) ! Deallocate target of P through Q.

! P is now undefined.

END

¢ If the execution of a RETURN or END statement causes the pointer’s
target to become undefined.

 After the execution of a RETURN or END statement in a procedure
where the pointer was declared or accessed, except for objects described
in item 4 under [“Events Causing Undefinition” on page 60)

Definition Status and Association Status

The definition status of a pointer is that of its target. If a pointer is associated with
a definable target, the definition status of the pointer can be defined or undefined
according to the rules for a variable.

Program Units and Procedures 133

If the association status of a pointer is disassociated or undefined, the pointer must
not be referenced or deallocated. Whatever its association status, a pointer can
always be nullified, allocated or pointer-assigned. When it is allocated, its
definition status is undefined. When it is pointer-assigned, its association and
definition status are determined by its target. So, if a pointer becomes associated
with a target that is defined, the pointer becomes defined.

Integer Pointer Association

| IBM Extension |

An integer pointer that is associated with a data object can be used to reference the
data object. This is called integer pointer association.

Integer pointer association can only occur in the following situations:
* An integer pointer is assigned the address of a variable:
POINTER (P,A)

P=LOC (B) ! A and B become associated
* Multiple pointees are declared with the same integer pointer:
POINTER (P,A), (P,B) ! A and B are associated

* Multiple integer pointers are assigned the address of the same variable or the
address of other variables that are storage associated:
POINTER (P,A), (Q,B)
P=L0OC(C)
Q=L0C(C) ! A, B, and C become associated
* An integer pointer variable that appears as a dummy argument is assigned the
address of another dummy argument or member of a common block:

POINTER (P,A)
CALL SUB (P,B)

SUBROUTINE SUB (P,X)
POINTER (P,Y)
P=L0C(X) ! Main program variables A
I and B become associated.

| End of IBM Extension

Program Units, Procedures, and Subprograms

A program unit is a sequence of one or more lines, organized as statements,
comments, and INCLUDE directives. Specifically, a program unit can be:

* The main program

* A module

* A block data program unit

* An external function subprogram

¢ An external subroutine subprogram
An executable program is a collection of program units consisting of one main

program and any number of external subprograms, modules, and block data
program units.

134 XL Fortran Advanced Edition for Mac OS X: Language Reference

A subprogram can be invoked by a main program or by another subprogram to
perform a particular activity. When a procedure is invoked, the referenced
subprogram is executed.

An external or module subprogram can contain multiple ENTRY statements. The
subprogram defines a procedure for the SUBROUTINE or FUNCTION statement,
as well as one procedure for each ENTRY statement.

An external procedure is defined either by an external subprogram or by a
program unit in a programming language other than Fortran.

Names of main programs, external procedures, block data program units, and
modules are global entities. Names of internal and module procedures are local
entities.

Internal Procedures

External subprograms, module subprograms, and main programs can have internal
subprograms, whether the internal subprograms are functions or subroutines, as
long as the internal subprograms follow the CONTAINS statement.

An internal procedure is defined by an internal subprogram. Internal subprograms
cannot appear in other internal subprograms. A module procedure is defined by a
module subprogram or an entry in a module subprogram.

Internal procedures and module procedures are the same as external procedures
except that:

* The name of the internal procedure or module procedure is not a global entity
* An internal subprogram must not contain an ENTRY statement

* The internal procedure name must not be an argument associated with a
dummy procedure

* The internal subprogram or module subprogram has access to host entities by
host association

Program Units and Procedures 135

Migration Tip:

Turn your external procedures into internal subprograms or put them into modules. The
explicit interface provides type checking.

FORTRAN 77 source

PROGRAM MAIN
INTEGER A
A=58
CALL SUB(A) I C must be passed
END
SUBROUTINE SUB(A)
INTEGER A,B,C ! A must be redeclared
C=A+B
END SUBROUTINE

Fortran 90 or Fortran 95 source

PROGRAM MAIN
INTEGER :: A=58
CALL SUB
CONTAINS
SUBROUTINE SUB
INTEGER B,C
C=A+B I A is accessible by host association
END SUBROUTINE
END

Interface Concepts

The interface of a procedure determines the form of the procedure reference. The
interface consists of:

* The characteristics of the procedure

¢ The name of the procedure

e The name and characteristics of each dummy argument

* The generic identifiers of the procedure, if any

The characteristics of a procedure consist of:
* Distinguishing the procedure as a subroutine or a function

 Distinguishing each dummy argument either as a data object, dummy
procedure, or alternate return specifier

The characteristics of a dummy data object are its type, type parameters (if any),
shape, intent, whether it is optional, allocatable, a pointer, a target, or has the
value attribute. Any dependence on other objects for type parameter or array
bound determination is a characteristic. If a shape, size, or character length is
assumed, it is a characteristic.

The characteristics of a dummy procedure are the explicitness of its interface, its
procedure characteristics (if the interface is explicit), and whether it is optional.

* If the procedure is a function, specifying the characteristics of the result value:
its type, type parameters (if any), rank, whether it is allocatable, and whether it
is a pointer. For nonpointer array results, its shape is a characteristic. Any
dependence on other objects for type parameters or array bound determination
is a characteristic. If the length of a character object is assumed, this is a
characteristic.

136 XL Fortran Advanced Edition for Mac OS X: Language Reference

If a procedure is accessible in a scoping unit, it has an interface that is either
explicit or implicit in that scoping unit. The rules are:

Entity Interface

Dummy procedure Explicit in a scoping unit if an interface block exists or
is accessible. Implicit in all other cases.

External subprogram Explicit in a scoping unit other than its own if an
interface block exists or is accessible. Implicit in all
other cases.

Recursive procedure with a result | Explicit in the subprogram’s own scoping unit.
clause

Module procedure Always explicit.
Internal procedure Always explicit.
Generic procedure Always explicit.
Intrinsic procedure Always explicit.
Statement function Always implicit.

Internal subprograms cannot appear in an interface block.
A procedure must not have more than one accessible interface in a scoping unit.

The interface of a statement function cannot be specified in an interface block.

Explicit Interface
A procedure must have an explicit interface if:

1. A reference to the procedure appears
+ with an argument keyword
* as a defined assignment (for subroutines only)
* in an expression as a defined operator (for functions only)
* as a reference by its generic name
. in a context that requires it to be pure.
2. The procedure has

+ a dummy argument that has|ALLOCATABLE|, [OPTIONAL) [POINTER}
[TARGET]| or [VALUH attribute

* an array-valued result (for functions only)

* a result whose length type parameter is neither assumed nor constant (for
character functions only)

* a pointer or allocatable result (for functions only)

3. The procedure is elemental.

Implicit Interface
A procedure has an implicit interface if its interface is not fully known; that is, it
has no explicit interface.

Program Units and Procedures 137

Interface Blocks

The interface block provides a means of specifying an explicit interface for external
procedures and dummy procedures. You can also use an interface block to define

generic identifiers. An interface body in an interface block specifies the explicit
specific interface for an existing external procedure or dummy procedure.

»»—INTERFACE _statement

v

y
Y

SUBROUTINE_interface_body—

|E;UNCTI0N_interface_body
ODULE_PROCEDURE_statement—

»>—END_INTERFACE_statement

INTERFACE_statement
See ["'INTERFACE” on page 32() for syntax details

END_INTERFACE_statement
See ["END INTERFACE” on page 279 for syntax details

MODULE_PROCEDURE_statement
See 'MODULE PROCEDURE” on page 329 for syntax details

FUNCTION _interface_body

»>—FUNCTION_statement

[

|—specz'fication_partJ

»—end_function_statement

A\
A

138 XL Fortran Advanced Edition for Mac OS X: Language Reference

SUBROUTINE _interface_body

»>—SUBROUTINE_statement ><

>>-

l—specification_part—l

»>—end_subroutine_statement

A\
A

FUNCTION_statement, SUBROUTINE_statement
For sintax details, see ["FUNCTION” on page 298| and [“SUBROUTINE” on|

page 372.

specification_part
is a sequence of statements from the statement groups numbered [and
B in [‘Order of Statements and Execution Sequence” on page 19|

end_function_statement, end_subroutine_statement
For syntax details of both statements, see [“END” on page 276)

In an interface body, you specify all the characteristics of the procedure. See
[“Interface Concepts” on page 136.| The characteristics must be consistent with those
specified in the subprogram definition, except that:

1. dummy argument names may be different.

2. you do not have to indicate that a procedure is pure, even if the subprogram
that defines it is pure.

3. you can associate a pure actual argument with a dummy procedure that is not
pure.

4. when you associate an intrinsic elemental procedure with a dummy procedure,
the dummy procedure does not have to be elemental

The specification_part of an interface body can contain statements that specify
attributes or define values for data objects that do not determine characteristics of
the procedure. Such specification statements have no effect on the interface.
Interface blocks do not specify the characteristics of module procedures, whose
characteristics are defined in the module subprogram definitions.

An interface body cannot contain ENTRY statements, DATA statements, FORMAT
statements, statement function statements, or executable statements. You can
specify an entry interface by using the entry name as the procedure name in an
interface body.

An interface body does not access named entities by host association. It is treated
as if it had a host with the default implicit rules. See|“How Type Is Determined”]
for a discussion of the implicit rules.

An interface block can be generic or nongeneric. A generic interface block must
specify a generic specification in the INTERFACE statement, while a nongeneric
interface block must not specify such a generic specification. See|"INTERFACE” on|

for details.

Program Units and Procedures 139

The interface bodies within a nongeneric interface block can contain interfaces for
both subroutines and functions.

A generic name specifies a single name to reference all of the procedures in the
interface block. At most, one specific procedure is invoked each time there is a
procedure reference with a generic name.

The MODULE PROCEDURE statement is allowed only if the interface block has a
generic specification and is contained in a scoping unit where each procedure
name is accessible as a module procedure.

A procedure name used in a MODULE PROCEDURE statement must not have
been previously specified in any MODULE PROCEDURE statement in any
accessible interface block with the same generic identifier.

| IBM Extension

For an interface to a non-Fortran subprogram, the dummy argument list in the
FUNCTION or SUBROUTINE statement can explicitly specify the passing
method. See [“Dummy Arguments” on page 155/ for details.

| End of IBM Extension

Example of an Interface

MODULE M
CONTAINS
SUBROUTINE S1(IARG)
IARG =1
END SUBROUTINE S1
SUBROUTINE S2(RARG)
RARG = 1.1
END SUBROUTINE S2
SUBROUTINE S3(LARG)
LOGICAL LARG

LARG = .TRUE.
END SUBROUTINE S3
END
USE M

INTERFACE SS
SUBROUTINE SS1(IARG,JARG)
END SUBROUTINE
MODULE PROCEDURE S1,S2,S3
END INTERFACE
CALL SS(II) I Calls subroutine S1 from M
CALL SS(I,J) I Calls subroutine SS1
END

SUBROUTINE SS1(IARG,JARG)
IARG = 2
JARG = 3

END SUBROUTINE

You can always reference a procedure through its specific interface. If a generic
interface exists for a procedure, the procedure can also be referenced through the
generic interface.

Within an interface body, if a dummy argument is intended to be a dummy

procedure, it must have the EXTERNAL attribute or there must be an interface for
the dummy argument.

140 XL Fortran Advanced Edition for Mac OS X: Language Reference

Generic Interface Blocks

A generic interface block must specify a generic name, defined operator, or defined
assignment in an INTERFACE statement. The generic name is a single name with
which to reference all of the procedures specified in the interface block. It can be
the same as any accessible generic name, or any of the procedure names in the
interface block.

If two or more generic interfaces that are accessible in a scoping unit have the
same local name, they are interpreted as a single generic interface.

Unambiguous Generic Procedure References

Whenever a generic procedure reference is made, only one specific procedure is
invoked. The following rules ensure that a generic reference is unambiguous.

If two procedures in the same scoping unit both define assignment or both have
the same defined operator and the same number of arguments, you must specify a
dummy argument that corresponds by position in the argument list to a dummy
argument of the other that has a different type, kind type parameter, or rank.

Within a scoping unit, two procedures that have the same generic name must both
be subroutines or both be functions. Also, at least one of them must have a
nonoptional dummy argument that both:

1. Corresponds by position in the argument list to a dummy argument that is
either not present in the argument list of the other subprogram, or is present
with a different type, kind type parameter, or rank.

2. Corresponds by argument keyword to a dummy argument not present in the
other argument list, or present with a different type, kind type parameter, or
rank.

When an interface block extends an intrinsic procedure (see the next section), the
above rules apply as if the intrinsic procedure consisted of a collection of specific
procedures, one procedure for each allowed set of arguments.

| IBM Extension

Notes:

1. Dummy arguments of type BYTE are considered to have the same type as
corresponding 1-byte dummy arguments of type INTEGER(1), LOGICAL(1),
and character.

2. When the -qintlog compiler option is specified, dummy arguments of type
integer and logical are considered to have the same type as corresponding
dummy arguments of type integer and logical with the same kind type
parameter.

3. If the dummy argument is only declared with the EXTERNAL attribute within
an interface body, the dummy argument must be the only dummy argument
corresponding by position to a procedure, and it must be the only dummy
argument corresponding by argument keyword to a procedure.

| End of IBM Extension |

Example of a Generic Interface Block

PROGRAM MAIN
INTERFACE A
FUNCTION AI(X)

Program Units and Procedures 141

INTEGER AI, X
END FUNCTION AI
END INTERFACE
INTERFACE A
FUNCTION AR(X)
REAL AR, X
END FUNCTION AR
END INTERFACE
INTERFACE FUNC
FUNCTION FUNCI1(I, EXT) ! Here, EXT is a procedure
INTEGER I
EXTERNAL EXT
END FUNCTION FUNC1
FUNCTION FUNC2(EXT, I)
INTEGER I
REAL EXT ! Here, EXT is a variable
END FUNCTION FUNC2
END INTERFACE
EXTERNAL MYFUNC

IRESULT=A(INTVAL) I Call to function AI
RRESULT=A(REALVAL) ! Call to function AR
RESULT=FUNC(1,MYFUNC) I Call to function FUNC1

END PROGRAM MAIN

Extending Intrinsic Procedures with Generic Interface Blocks

A generic intrinsic procedure can be extended or redefined. An extended intrinsic
procedure supplements the existing specific intrinsic procedures. A redefined
intrinsic procedure replaces an existing specific intrinsic procedure.

When a generic name is the same as a generic intrinsic procedure name and the
name has the INTRINSIC attribute (or appears in an intrinsic context), the generic
interface extends the generic intrinsic procedure.

When a generic name is the same as a generic intrinsic procedure name and the
name does not have the INTRINSIC attribute (nor appears in an intrinsic context),
the generic interface can redefine the generic intrinsic procedure.

A generic interface name cannot be the same as a specific intrinsic procedure name
if the name has the INTRINSIC attribute (or appears in an intrinsic context).

Example of Extending and Redefining Intrinsic Procedures

PROGRAM MAIN
INTRINSIC MAX
INTERFACE MAX I Extension to intrinsic MAX
FUNCTION MAXCHAR(STRING)
CHARACTER(50) STRING
END FUNCTION MAXCHAR
END INTERFACE

INTERFACE ABS | Redefines generic ABS as
FUNCTION MYABS (ARG) ! ABS does not appear in
REAL(8) MYABS, ARG ! an INTRINSIC statement

END FUNCTION MYABS
END INTERFACE
REAL(8) DARG, DANS
REAL(4) RANS
INTEGER IANS,IARG
CHARACTER(50) NAME

DANS = ABS(DARG) ! Calls external MYABS
IANS = ABS(IARG) I Calls intrinsic IABS
DANS = DABS (DARG) ! Calls intrinsic DABS
IANS = MAX(NAME) ! Calls external MAXCHAR
RANS = MAX(1.0,2.0) I Calls intrinsic AMAX1

END PROGRAM MAIN

142 XL Fortran Advanced Edition for Mac OS X: Language Reference

Defined Operators

A defined operator is a user-defined unary or binary operator, or an extended
intrinsic operator (see [‘Extended Intrinsic and Defined Operations” on page 97). It
must be defined by both a function and a generic interface block.

1.

To define the unary operation op x;:

a. A function or entry must exist that specifies exactly one dummy argument,
d,.

The generic_spec in an INTERFACE statement specifies OPERATOR (op).
The type of x, is the same as the type of the dummy argument d,.

The type parameters, if any, of x; must match those of d,.

Either

e The function is ELEMENTAL, or
¢ The rank of x,, and its shape, if it is an array, match those of d,

Pooo

To define the binary operation x; op x,:

a. The function is specified with a FUNCTION or ENTRY statement that
specifies two dummy arguments, 4, and d,.

b. The generic_spec in an INTERFACE block specifies OPERATOR (op).

c. The types of x; and x, are the same as those of the dummy arguments d,
and d,, respectively.

d. The type parameters, if any, of x; and x, match those of 4, and d,,
respectively.

e. Either:

* The function is ELEMENTAL and x; and x, are conformable or,

* The ranks of x; and x, and their shapes, if either or both are arrays,
match those of d, and d,, respectively.
If op is an intrinsic operator, the types or ranks of either x; or x, are not those
required for an intrinsic operation.
The generic_spec must not specify OPERATOR for functions with no arguments
or for functions with more than two arguments.

Each argument must be nonoptional.

The arguments must be specified with INTENT(IN).

Each function specified in the interface block cannot have a result of assumed
character length.

If the operator specified is an intrinsic operator, the number of function
arguments must be consistent with the intrinsic uses of that operator.

A given defined operator can, as with generic names, apply to more than one
function, in which case it is generic just like generic procedure names. For
intrinsic operator symbols, the generic properties include the intrinsic
operations they represent.

IBM Extension |

10. The following rules apply only to extended intrinsic operations:

a. The type of one of the arguments can only be of type BYTE when the type
of the other argument is of derived type.

b. When the -qintlog compiler option has been specified for non-character
operations, and 4, is numeric or logical, then d, must not be numeric or
logical.

c. When the -qctyplss compiler option has been specified for non-character
operations, if x; is numeric or logical and x, is a character constant, the
intrinsic operation is performed.

Program Units and Procedures 143

| End of IBM Extension

Example of a Defined Operator

INTERFACE OPERATOR (.DETERMINANT.)
FUNCTION IDETERMINANT (ARRAY)
INTEGER, INTENT(IN), DIMENSION (:,:) :: ARRAY
INTEGER IDETERMINANT
END FUNCTION
END INTERFACE
END

Defined Assignment

A defined assignment is treated as a reference to a subroutine, with the left-hand
side as the first argument and the right-hand side enclosed in parentheses as the
second argument.

1. To define the defined assignment x; = x,:

a. The subroutine is specified with a SUBROUTINE or ENTRY statement that
specifies two dummy arguments, 4, and d,.

b. The generic_spec of an interface block specifies ASSIGNMENT (=).

C. The types of x; and x, are the same as those of the dummy arguments d,
and d,, respectively.

d. The type parameters, if any, of x; and x, match those of d; and d,,
respectively.

e. Either:

* The subroutine is ELEMENTAL and either x, and x, have the same
shape, x, is scalar, or

* The ranks of x; and x,, and their shapes, if either or both are arrays,
match those of d, and d,, respectively.

2. ASSIGNMENT must only be used for subroutines with exactly two arguments.
3. Each argument must be nonoptional.

4. The first argument must have INTENT(OUT) or INTENT(INOUT), and the
second argument must have INTENT(IN).

5. The types of the arguments must not be both numeric, both logical, or both
character with the same kind parameter.

IBM Extension

The type of one of the arguments can only be of type BYTE when the type of
the other argument is of derived type.

When the -qintlog compiler option has been specified, and d; is numeric or
logical, then d, must not be numeric or logical.

When the -qctyplss compiler option has been specified, if x; is numeric or
logical and x, is a character constant, intrinsic assignment is performed.

| End of IBM Extension

6. The ASSIGNMENT generic specification specifies that the assignment
operation is extended or redefined if both sides of the equal sign are of the
same derived type.

144 XL Fortran Advanced Edition for Mac OS X: Language Reference

Example of Defined Assignment

INTERFACE ASSIGNMENT (=)
SUBROUTINE BIT_TO NUMERIC (N,B)
INTEGER, INTENT(OUT) :: N
LOGICAL, INTENT(IN), DIMENSION(:) :: B
END SUBROUTINE
END INTERFACE

Main Program

A main program is the program unit that receives control from the system when
the executable program is invoked at run time.

|—PROGRAM_S tatemen tJ

l—specification_part—l

I—execui.‘z’on_part—|

l—internal_subprogram_part—l

»>—END_PROGRAM_statement ><

PROGRAM_statement
See ['PROGRAM” on page 347 for syntax details

specification_part
is a sequence of statements from the statement groups numbered

A, Fl. and [in [‘Order of Statements and Execution Sequence”|

execution_part is a sequence of statements from the statement groups numbered
f] and B in[“Order of Statements and Execution Sequence” on|
and which must begin with a statement from statement

group H

internal_subprogram_part
See [“Internal Procedures” on page 135|for details

END_PROGRAM_statement
See ["END” on page 276| for syntax details

A main program cannot contain an ENTRY statement, nor can it specify an
automatic object.

| IBM Extension |

A[RETURN] statement can appear in a main program. The execution of a RETURN

Program Units and Procedures 145

statement has the same effect as the execution of an statement.

| End of IBM Extension

A main program cannot reference itself, directly or indirectly.

Modules

A module contains specifications and definitions that can be accessed from other
program units. These definitions include data object definitions, namelist groups,
derived-type definitions, procedure interface blocks and procedure definitions.

»>—MODULE _statement ><

y
v
A

l—specification_part—l

A\

|—module_subprogram _part—l

»>—END_MODULE_statement ><

MODULE_statement
See 'MODULE” on page 328| for syntax details

specification_part
is a sequence of statements from the statement groups numbered

7], EFl. and B in[‘Order of Statements and Execution Sequence’]

146 XL Fortran Advanced Edition for Mac OS X: Language Reference

module_subprogram_part:

»>—CONTAINS_statement ><

»»—Y-module_subprogram

A\
A

CONTAINS_statement
See [“CONTAINS” on page 254 for syntax details

END_MODULE_statement
See [“END” on page 276| for syntax details

A module subprogram is contained in a module but is not an internal subprogram.
Module subprograms must follow a CONTAINS statement, and can contain
internal procedures. A module procedure is defined by a module subprogram or
an entry in a module subprogram.

Executable statements within a module can only be specified in module
subprograms.

The declaration of a module function name of type character cannot have an
asterisk as a length specification.

specification_part cannot contain statement function statements, ENTRY statements,
or FORMAT statements, although these statements can appear in the specification
part of a module subprogram.

Automatic objects and objects with the AUTOMATIC attribute cannot appear in
the scope of a module.

An accessible module procedure can be invoked by another subprogram in the
module or by any scoping unit outside the module through use association (that is,
by using the USE statement). See I"USE” on page 384| for details.

| IBM Extension |

Integer pointers cannot appear in specification_part if the pointee specifies a
dimension declarator with nonconstant bounds.

All objects in the scope of a module retain their association status, allocation status,
definition status, and value when any procedure that accesses the module through
use association executes a RETURN or END statement. See point 4 under
(Causing Undefinition” on page 60| for more information.

| End of IBM Extension |

A module is a host to any module procedures or derived-type definitions it
contains, which can access entities in the scope of the module through host
association.

Program Units and Procedures 147

A module procedure can be used as an actual argument associated with a dummy
procedure argument.

The name of a module procedure is local to the scope of the module and cannot be
the same as the name of any entity in the module, except for a common block
name.

Migration Tips:
¢ Eliminate common blocks and INCLUDE directives

* Use modules to hold global data and procedures to ensure consistency of definitions

FORTRAN 77 source:

COMMON /BLOCK/A, B, C, NAME, NUMBER
REAL A, B, C
A=3
CALL CALLUP(D)
PRINT =, NAME, NUMBER
END
SUBROUTINE CALLUP (PARM)
COMMON /BLOCK/A, B, C, NAME, NUMBER

REAL A, B, C

NAME = 3

NUMBER = 4
END

Fortran 90 or Fortran 95 source:
MODULE FUNCS

REAL A, B, C I Common block no Tonger needed
INTEGER NAME, NUMBER ! Global data
CONTAINS
SUBROUTINE CALLUP (PARM)
NAME = 3
NUMBER = 4

END SUBROUTINE
END MODULE FUNCS
PROGRAM MAIN
USE FUNCS
A=3
CALL CALLUP(D)
PRINT *, NAME, NUMBER
END

Example of a Module

MODULE M
INTEGER SOME_DATA
CONTAINS
SUBROUTINE SUB() I Module subprogram
INTEGER STMTENC
STMTFNC(I) =1 + 1
SOME_DATA = STMTFNC(5) + INNER(3)
CONTAINS
INTEGER FUNCTION INNER(IARG) I Internal subprogram
INNER = IARG * 2
END FUNCTION
END SUBROUTINE SUB
END MODULE

148 XL Fortran Advanced Edition for Mac OS X: Language Reference

PROGRAM MAIN
USE M ! Main program accesses
CALL SUB() ! module M

END PROGRAM

Block Data Program Unit

A block data program unit provides initial values for objects in named common
blocks.

»>—BLOCK_DATA_statement

A\
A

-
>p

l—specification_part—l

»»—END BLOCK DATA statement ><

BLOCK_DATA_statement
See ['BLOCK DATA” on page 233|for syntax details

specification_part
is a sequence of statements from the statement groups numbered

], F, and B in [‘Order of Statements and Execution Sequence”]

END_BLOCK_DATA_statement
See ['END” on page 276| for syntax details

In specification_part, you can specify type declaration, USE, IMPLICIT, COMMON,
DATA, EQUIVALENCE, and integer pointer statements, derived-type definitions,
and the allowable attribute specification statements. The only attributes that can be
specified include DIMENSION, INTRINSIC, PARAMETER, POINTER, SAVE,
and TARGET.

A type declaration statement in a block data specification-part shall not contain
ALLOCATABLE or EXTERNAL attribute specifiers.

You can have more than one block data program unit in an executable program,
but only one can be unnamed. You can also initialize multiple named common
blocks in a block data program unit.

Restrictions on common blocks in block data program units are:

* All items in a named common block must appear in the COMMON statement,
even if they are not all initialized.

* The same named common block must not be referenced in two different block
data program units.

* Only nonpointer objects in named common blocks can be initialized in block
data program units.

* Objects in blank common blocks cannot be initialized.

Program Units and Procedures 149

Example of a Block Data Program Unit

PROGRAM MAIN
COMMON /L3/ C, X(10)
COMMON /L4/ Y(5)
END PROGRAM
BLOCK DATA BDATA
COMMON /L3/ C, X(10)
DATA C, X /1.0, 10%2.0/ ! Initializing common block L3
END BLOCK DATA

BLOCK DATA I An unnamed block data program unit
PARAMETER (Z=10)
DIMENSION Y(5)
COMMON /L4/ Y
DATA Y /5*Z/
END BLOCK DATA

Function and Subroutine Subprograms

A subprogram is either a function or a subroutine, and is either an internal,
external, or module subprogram. You can also specify a function in a statement
function statement. An external subprogram is a program unit.

\4
A

»>—subprogram_statement

v
\
Y
A

l—specification_part—l

y
v
A

|—execution_par‘tJ

A\

l—internal_subprogram_part—l

»>—end_subprogram_statement ><

subprogram_statement

See ['FUNCTION” on page 29§ or [“SUBROUTINE” on page 372| for

syntax details

specification_part
is a sequence of statements from the statement groups numbered

4, EJ, and ﬂ in [“Order of Statements and Execution Sequence”]|

execution_part is a sequence of statements from the statement groups numbered

EE and B in [“Order of Statements and Execution Sequence” on|

age 19,|and which must begin with a statement from statement
group H

internal_subprogram_part
See [“Internal Procedures” on page 135|for details

150 XL Fortran Advanced Edition for Mac OS X: Language Reference

end_subprogram_statement
See ['END” on page 276| for syntax details on the END statement
for functions and subroutines

An internal subprogram is declared after the CONTAINS statement in the main
program, a module subprogram, or an external subprogram, but before the END
statement of the host program. The name of an internal subprogram must not be
defined in the specification section in the host scoping unit.

An external procedure has global scope with respect to the executable program. In
the calling program unit, you can specify the interface to an external procedure in
an interface block or you can define the external procedure name with the
EXTERNAL attribute.

A subprogram can contain any statement except PROGRAM] [BLOCK DATA|and
IMODULE statements. An internal subprogram cannot contain an ENTRY
statement or an internal subprogram.

Procedure References

There are two types of procedure references:

* A subroutine is invoked by execution of a CALL statement (see [“CALL” on pagé
for details) or defined assignment statement.

* A function is invoked during evaluation of a function reference or defined
operation.

Function Reference
A function reference is used as a primary in an expression:

) »><

»>—function_name—(

|—actual_argumen t_spec_lis t—l

Executing a function reference results in the following order of events:

Actual arguments that are expressions are evaluated.

Actual arguments are associated with their corresponding dummy arguments.
Control transfers to the specified function.

The function is executed.

The value (or status or target, for pointer functions) of the function result
variable is available to the referencing expression.

aprpwNE

Execution of a function reference must not alter the value of any other data item
within the statement in which the function reference appears. Invocation of a
function reference in the logical expression of a llogical IF statement| or WHERE
statement can affect entities in the statement that is executed when the value of the
expression is true.

| IBM Extension |

The argument list built-in functions %VAL and %REF are supplied to aid
interlanguage calls by allowing arguments to be passed by value and by reference,
respectively. They can be specified in non-Fortran procedure references and in a
subprogram statement in an interface body. (See[“%VAL and %REF” on page 157

Program Units and Procedures 151

See [Statement Function| and [Recursion| examples of function references.

| End of IBM Extension

On entry to an allocatable function, the allocation status of the result variable
becomes not currently allocated

The function result variable may be allocated and deallocated any number of times
during the execution of the function. However, it shall be currently allocated and
have a defined value on exit from the function. Automatic deallocation of the
result variable does not occur immediately on exit from the function, but instead
occurs after execution of the statement in which the function reference occurs.

Examples of Subprograms and Procedure References
PROGRAM MAIN

REAL QUAD,X2,X1,X0,A,C3

QUAD=0; A=X1#X2

X2 = 2.0
X1 = SIN(4.5) ! Reference to intrinsic function
X0 = 1.0
CALL Q(X2,X1,X0,QUAD) ! Reference to external subroutine
C3 = CUBE() ! Reference to internal function
CONTAINS

REAL FUNCTION CUBE() ! Internal function

CUBE = A*%3

END FUNCTION CUBE
END
SUBROUTINE Q(A,B,C,QUAD) I External subroutine

REAL A,B,C,QUAD
QUAD = (-B + SQRT(Bx%2-4%AxC)) / (2A)
END SUBROUTINE Q

Examples of Allocatable Function Results

FUNCTION INQUIRE_FILES_OPEN() RESULT(OPENED STATUS)
LOGICAL,ALLOCATABLE :: OPENED_STATUS(:)
INTEGER I,J
LOGICAL TEST
DO 1=1000,0,-1

INQUIRE (UNIT=I,0PENED=TEST,ERR=100)
IF (TEST) EXIT

100 CONTINUE
END DO
ALLOCATE (OPENED_STATUS(0:1))

D0 J=0,1
INQUIRE (UNIT=J,0PENED=0PENED_STATUS(J))
END DO
END FUNCTION INQUIRE_FILES_OPEN

Intrinsic Procedures

An intrinsic procedure is a procedure already defined by XL Fortran. See
[Procedures” on page 421 for details.

You can reference some intrinsic procedures by a generic name, some by a specific
name, and some by both:

A generic intrinsic function
does not require a specific argument type and usually produces a result of
the same type as that of the argument, with some exceptions. Generic
names simplify references to intrinsic procedures because the same

152 XL Fortran Advanced Edition for Mac OS X: Language Reference

procedure name can be used with more than one type of argument; the
type and kind type parameter of the arguments determine which specific
function is used.

A specific intrinsic function
requires a specific argument type and produces a result of a specific type.

A specific intrinsic function name can be passed as an actual argument. If a
specific intrinsic function has the same name as a generic intrinsic function,
the specific name is referenced. All references to a dummy procedure that
are associated with a specific intrinsic procedure must use arguments that
are consistent with the interface of the intrinsic procedure.

Whether or not you can pass the name of an intrinsic procedure as an argument
depends on the procedure. You can use the specific name of an intrinsic procedure
that has been specified with the INTRINSIC attribute as an actual argument in a
procedure reference.

e An IMPLICIT statement does not change the type of an intrinsic function.

* If an intrinsic name is specified with the INTRINSIC attribute, the name is
always recognized as an intrinsic procedure.

Conflicts Between Intrinsic Procedure Names and Other
Names

Because intrinsic procedure names are recognized, when a data object is declared
with the same name as an intrinsic procedure, the intrinsic procedure is
inaccessible.

A generic interface block can extend or redefine a generic intrinsic function, as
described in [“Interface Blocks” on page 138 If the function already has the
INTRINSIC attribute, it is extended; otherwise, it can be redefined.

Arguments

Actual Argument Specification

[N
>p

|_ _| argument
arg_keyword— = (1)
%VAL—(—argument

A\
A

)
)

(2)

%REF— (—argument

Notes:
1 IBM Extension
2 IBM Extension

arg_keyword
is a dummy argument name in the explicit interface of the procedure being
invoked

Program Units and Procedures 153

argument
is an actual argument

| IBM Extension

%VAL, %REF
specifies the passing method. See [“%VAL and %REF” on page 157 for more
information.

| End of IBM Extension |

An actual argument appears in the argument list of a procedure reference. An
actual argument in a procedure reference can be one of the following:

* An expression
* A variable
* A procedure name

* An alternate return specifier (if the actual argument is in a CALL statement),
having the form =*stmt_label, where stmt_label is the statement label of a branch
target statement in the same scoping unit as the CALL statement.

An actual argument specified in a statement function reference must be a scalar
object.

A procedure name cannot be the name of an internal procedure, statement
function, or the generic name of a procedure, unless it is also a specific name.

The rules and restrictions for referencing a procedure described in [“Procedure)
[References” on page 151|p Fs5] You cannot use a non-intrinsic elemental
procedure as an actual argument in Fortran 95.

Argument Keywords

Argument keywords allow you to specify actual arguments in a different order
than the dummy arguments. With argument keywords, any actual arguments that
correspond to optional dummy arguments can be omitted; that is, dummy
arguments that merely serve as placeholders are not necessary.

Each argument keyword must be the name of a dummy argument in the explicit
interface of the procedure being referenced. An argument keyword must not
appear in an argument list of a procedure that has an implicit interface.

In the argument list, if an actual argument is specified with an argument keyword,
the subsequent actual arguments in the list must also be specified with argument
keywords.

An argument keyword cannot be specified for label parameters. Label parameters
must appear before referencing the argument keywords in that procedure
reference.

Example of Argument Keywords:

INTEGER MYARRAY(1:10)
INTERFACE
SUBROUTINE SORT(ARRAY, DESCENDING, ARRAY_SIZE)
INTEGER ARRAY_SIZE, ARRAY(ARRAY_SIZE)
LOGICAL, OPTIONAL :: DESCENDING
END SUBROUTINE
END INTERFACE

154 XL Fortran Advanced Edition for Mac OS X: Language Reference

CALL SORT(MYARRAY, ARRAY SIZE=10) ! No actual argument corresponds to the
! optional dummy argument DESCENDING
END
SUBROUTINE SORT(ARRAY, DESCENDING, ARRAY_SIZE)
INTEGER ARRAY_SIZE, ARRAY(ARRAY_SIZE)
LOGICAL, OPTIONAL :: DESCENDING
IF (PRESENT(DESCENDING)) THEN

END SUBROUTINE

Dummy Arguments

> dummy_arg_name >
(1)
SVAL (—dummy_arg_name—)

(2)

%REF (—dummy_arg_name—)

Notes:
1 IBM Extension
2 IBM Extension

A dummy argument is specified in a [Statement Function statement] FUNCTION]|
statement, statement, or |ENTRY| statement. Dummy arguments in
statement functions, function subprograms, interface bodies, and subroutine
subprograms indicate the types of actual arguments and whether each argument is
a scalar value, array, procedure, or statement label. A dummy argument in an

external, module, or internal subprogram definition, or in an interface body, is
classified as one of the following:

* A variable name
* A procedure name

* An asterisk (in subroutines only, to indicate an alternate return point)

| IBM Extension |

%VAL or %REF can only be specified for a dummy argument in a FUNCTION or
SUBROUTINE statement in an interface block. The interface must be for a
non-Fortran procedure interface. If % VAL or %REF appears in an interface block
for an external procedure, this passing method is implied for each reference to that
procedure. If an actual argument in an external procedure reference specifies
%VAL or %REF, the same passing method must be specified in the interface block
for the corresponding dummy argument. See [‘%VAL and %REF” on page 157 for
more details.

| End of IBM Extension |

A dummy argument in a statement function definition is classified as a variable
name.

A given name can appear only once in a dummy argument list.

The name of a variable that appears as a dummy argument in a statement function
statement has a scope of the statement in which it appears. It has the type that it

Program Units and Procedures 155

would have if it were the name of a variable in the scoping unit that includes the
statement function. It cannot have the same name as an accessible array.

Argument Association

Actual arguments are associated with dummy arguments when a function or
subroutine is referenced. In a procedure reference, the actual argument list
identifies the correspondence between the actual arguments provided in the list
and the dummy arguments of the subprogram.

When there is no argument keyword, an actual argument is associated with the
dummy argument that occupies the corresponding position in the dummy
argument list. The first actual argument becomes associated with the first dummy
argument, the second actual argument with the second dummy argument, and so
forth. Each actual argument must be associated with a dummy argument.

When a keyword is present, the actual argument is associated with the dummy
argument whose name is the same as the argument keyword. In the scoping unit
that contains the procedure reference, the names of the dummy arguments must
exist in an accessible explicit interface.

Argument association within a subprogram terminates upon execution of a
[RETURN] or [END|statement in the subprogram. There is no retention of argument
association between one reference of a subprogram and the next reference of the
subprogram, unless the persistent suboption of the -qx1f77 compiler option is
specified and the subprogram contains at least one entry procedure.

| IBM Extension |

Except when %VAL is used, the subprogram reserves no storage for the dummy
argument. It uses the corresponding actual argument for calculations. Therefore,
the value of the actual argument changes when the dummy argument changes. If
the corresponding actual argument is an expression or an array section with vector
subscripts, the calling procedure reserves storage for the actual argument, and the
subprogram must not define, redefine, or undefine the dummy argument.

If the actual argument is specified with %VAL, or the corresponding dummy
argument has the [VALUE|attribute, the subprogram does not have access to the
storage area of the actual argument.

| End of IBM Extension |

Actual arguments must agree in type and type parameters with their
corresponding dummy arguments (and in shape if the dummy arguments are
pointers or assumed-shape), except for two cases: a subroutine name has no type
and must be associated with a dummy procedure name that is a subroutine, and
an alternate return specifier has no type and must be associated with an asterisk.

Argument association can be carried through more than one level of procedure
reference.

If a subprogram reference causes a dummy argument in the referenced
subprogram to become associated with another dummy argument in the referenced
subprogram, neither dummy argument can become defined, redefined, or
undefined during that subprogram. For example, if a subroutine definition is:

SUBROUTINE XYZ (A,B)

156 XL Fortran Advanced Edition for Mac OS X: Language Reference

and it is referenced by:
CALL XYZ (cC,C)

the dummy arguments A and B each become associated with the same actual
argument C and, therefore, with each other. Neither A nor B can be defined,
redefined, or undefined during the execution of subroutine XYZ or by any
procedures referenced by XYZ.

If a dummy argument becomes associated with an entity in a common block or an
entity accessible through use or host association, the value of the entity must only
be altered through the use of the dummy argument name, while the entity is
associated with the dummy argument. If any part of a data object is defined
through a dummy argument, the data object can be referenced only through that
dummy argument, either before or after the definition occurs. These restrictions
also apply to pointer targets.

| IBM Extension |

If you have programs that do not conform to these restrictions, using the compiler
option -qalias=nostd may be appropriate. See the fqalias Option|in the [User’s|
for details.

| End of IBM Extension |

%VAL and %REF

| IBM Extension |

To call subprograms written in languages other than Fortran (for example,
user-written C programs, or Mac OS X operating system routines), the actual
arguments may need to be passed by a method different from the default method
used by XL Fortran. The default method passes the address of the actual argument
and, if it is of type character, the length. (Use the -qnullterm compiler option to
ensure that scalar character initialization expressions are passed with terminating
null strings. See |-qnullterm|in the [User’s Guide| for details.)

The default passing method can be changed by using the % VAL and %REF
built-in functions in the argument list of a statement or [function reference]
or with the dummy arguments in interface bodies. These built-in functions specify
the way an actual argument is passed to the external subprogram.

%VAL and %REF built-in functions cannot be used in the argument lists of Fortran
procedure references, nor can they be used with alternate return specifiers.

The argument list built-in functions are:

%VAL This built-in function can be used with actual arguments that are
CHARACTER(@), logical, integer, real, complex expressions, or sequence
derived type. Objects of derived type cannot contain character structure
components whose lengths are greater than 1 byte, or arrays.

%VAL cannot be used with actual arguments that are arrays, procedure
names, or character expressions of length greater than 1 byte.

%VAL causes the actual argument to be passed as 32-bit or 64-bit
intermediate values. If the actual argument is of type real or complex, it is
passed as one or more 64-bit intermediate values. If the actual argument is

Program Units and Procedures 157

of integer, logical, or sequence derived type, it is passed as one or more
32-bit intermediate values. An integer actual argument shorter than 32 bits
is sign-extended to a 32-bit value, while a logical actual argument shorter
than 32 bits is padded with zeros to a 32-bit value.

Byte named constants and variables are passed as if they were
INTEGER(). If the actual argument is a CHARACTER(1), it is padded on
the left with zeros to a 32-bit value, regardless of whether the -qctyplss
compiler option is specified.

%REF This built-in function causes the actual argument to be passed by reference;
that is, only the address of the actual argument is passed. Unlike the
default passing method, %REF does not pass the length of a character
argument. If such a character argument is being passed to a C routine, the
string must be terminated with a null character (for example, using the
-qnullterm option) so that the C routine can determine the length of the
string.

Examples of %VAL and %REF
EXTERNAL FUNC

CALL RIGHT2(%REF(FUNC)) ! procedure name passed by reference
REAL XVAR

CALL RIGHT3(%VAL(XVAR)) I real argument passed by value
IVARB=6

CALL TPROG(%VAL(IVARB)) I integer argument passed by value

See ["VALUE” on page 38| for a standards conforming alternative to % VAL.

See |[nterlanguage Calls|in the for more information.

| End of IBM Extension

Intent of Dummy Arguments

With the INTENT attribute, you can explicitly specify the intended use of a
dummy argument. Use of this attribute may improve optimization of the
program’s calling procedure when an explicit interface exists. Also, the explicitness
of argument intent may provide more opportunities for error checking. See
['INTENT” on page 31§ for syntax details.

| IBM Extension

The following table outlines XL Fortran’s passing method for internal procedures
(not including assumed-shape dummy arguments and pointer dummy arguments):

Table 5. Passing Method and Intent

Argument Type Intent(IN) Intent(OUT) Intent(INOUT) No Intent
Non-CHARACTER VALUE default default default
Scalar
CHARACTER*1 VALUE REFERENCE REFERENCE REFERENCE
Scalar
CHARACTER*n REFERENCE REFERENCE REFERENCE REFERENCE
Scalar
CHARACTER*(*) default default default default
Scalar
Derived Type ' Scalar VALUE default default default

158 XL Fortran Advanced Edition for Mac OS X: Language Reference

Table 5. Passing Method and Intent (continued)

Argument Type Intent(IN) Intent(OUT) IntentINOUT) No Intent
Derived Type * Scalar default default default default
Non-CHARACTER default default default default
Array
CHARACTER*1 REFERENCE REFERENCE REFERENCE REFERENCE
Array
CHARACTER*n REFERENCE REFERENCE REFERENCE REFERENCE
Array
CHARACTER*(*) default default default default
Array
Derived Type > Array default default default default

| End of IBM Extension

Optional Dummy Arguments

The OPTIONAL attribute specifies that a dummy argument need not be associated
with an actual argument in a reference to a procedure. Some advantages of the
OPTIONAL attribute include:

* The use of optional dummy arguments to override default behavior. For an
example, see [“Example of Argument Keywords” on page 154

* Additional flexibility in procedure references. For example, a procedure could
include optional arguments for error handlers or return codes, but you can select
which procedure references would supply the corresponding actual arguments.

See ["'OPTIONAL” on page 337|for details about syntax and rules.

Restrictions on Optional Dummy Arguments Not Present

A dummy argument is present in an instance of a subprogram if it is associated
with an actual argument, and the actual argument is either a dummy argument
that is not optional in the invoking subprogram or a dummy argument that is not
present in the invoking subprogram. A dummy argument that is not optional must
be present.

An optional dummy argument that is not present must conform to the following
rules:

 If it is a dummy data object, it must not be referenced or defined. If the dummy
data object is of a type for which default initialization can be specified, the
initialization has no effect.

 If it is a dummy procedure, it must not be invoked.

* It must not be supplied as an actual argument that corresponds to a nonoptional
dummy argument, except as the argument of the PRESENT intrinsic function.

* A subobject of an optional dummy argument that is not present must not be
supplied as an actual argument that corresponds to an optional dummy
argument.

1. A data object of derived type with no array components or CHARACTER*n components, (where 1 > 1).
2. A data object of derived type with array components or CHARACTER*n components, (where 1 > 1).
3. A data object of derived type with components of any type, size and rank.

Program Units and Procedures 159

* If the optional dummy argument that is not present is an array, it must not be
supplied as an actual argument to an elemental procedure unless an array of the
same rank is supplied as an actual argument that corresponds to a nonoptional
dummy argument of that elemental procedure.

* If the optional dummy argument that is not present is a pointer, it must not be
supplied as an actual argument that corresponds to a nonpointer dummy
argument, except as the argument of the PRESENT intrinsic function.

e If the optional dummy argument that is not present is allocatable, it must not be
allocated, deallocated, or supplied as an actual argument corresponding to a
nonallocatable dummy argument other than as the argument of the PRESENT
intrinsic function.

Length of Character Arguments

If the length of a character dummy argument is a nonconstant specification
expression, the object is a dummy argument with a run-time length. If an object
that is not a dummy argument has a run-time length, it is an automatic object. See
[“Automatic Objects” on page 22| for details.

If a dummy argument has a length specifier of an asterisk in parentheses, the
length of the dummy argument is “inherited” from the actual argument. The
length is inherited because it is specified outside the program unit containing the
dummy argument. If the associated actual argument is an array name, the length
inherited by the dummy argument is the length of an array element in the
associated actual argument array. %REF cannot be specified for a character dummy
argument with inherited length.

Variables as Dummy Arguments

A dummy argument that is a variable must be associated with an actual argument
that is a variable with the same type and kind type parameter.

If the actual argument is scalar, the corresponding dummy argument must be
scalar, unless the actual argument is an element of an array that is not an
assumed-shape or pointer array (or a substring of such an element). If the actual
argument is allocatable, the corresponding dummy argument must also be
allocatable. If the procedure is referenced by a generic name or as a defined
operator or defined assignment, the ranks of the actual arguments and
corresponding dummy arguments must agree. A scalar dummy argument can be
associated only with a scalar actual argument.

| Fortran 95 |

The following apply to dummy arguments used in elemental subprograms:
e All dummy arguments must be scalar, and cannot have the [ALLOCATABLE| or
-

OINTER| attribute.

e A dummy argument, or a suboject thereof, cannot be used in a specification
expression, except if it is used as an argument to the BIT_SIZE, KIND, or LEN
intrinsic functions, or as an argument to one of the numeric inquiry intrinsic
functions, see ['Intrinsic Procedures” on page 421/

* A dummy argument cannot be an asterisk.

* A dummy argument cannot be a dummy procedure.

| End of Fortran 95

160 XL Fortran Advanced Edition for Mac OS X: Language Reference

If a scalar dummy argument is of type character, its length must be less than or
equal to the length of the actual argument. The dummy argument is associated
with the leftmost characters of the actual argument. If the character dummy
argument is an array, the length restriction applies to the entire array rather than
each array element. That is, the lengths of associated array elements can vary,
although the whole dummy argument array cannot be longer than the whole
actual argument array.

If the dummy argument is an assumed-shape array, the actual argument must not
be an assumed-size array or a scalar (including a designator for an array element
or an array element substring).

If the dummy argument is an explicit-shape or assumed-size array, and if the
actual argument is a noncharacter array, the size of the dummy argument must not
exceed the size of the actual argument array. Each actual array element is
associated with the corresponding dummy array element. If the actual argument is
a noncharacter array element with a subscript value of as, the size of the dummy
argument array must not exceed the size of the actual argument array + 1 - as.
The dummy argument array element with a subscript value of ds becomes
associated with the actual argument array element that has a subscript value of as
+ds - L

If an actual argument is a character array, character array element, or character
substring, and begins at a character storage unit acu of an array, character storage
unit dcu of an associated dummy argument array becomes associated with
character storage unit acu+dcu-1 of the actual array argument.

You can define a dummy argument that is a variable name within a subprogram if
the associated actual argument is a variable. You must not redefine a dummy
argument that is a variable name within a subprogram if the associated actual
argument is not definable.

If the actual argument is an array section with a vector subscript, the associated
dummy argument cannot be defined.

If a nonpointer dummy argument is associated with a pointer actual argument, the
actual argument must be currently associated with a target, to which the dummy
argument becomes argument associated. Any restrictions on the passing method
apply to the target of the actual argument.

If the dummy argument is neither a target nor a pointer, any pointers associated
with the actual argument do not become associated with the corresponding
dummy argument on invocation of the procedure.

If both the dummy and actual arguments are targets, with the dummy argument
being a scalar or an assumed-shape array (and the actual argument is not an array
section with a vector subscript):

1. Any pointers associated with the actual argument become associated with the
corresponding dummy argument on invocation of the procedure.

2. When execution of the procedure completes, any pointers associated with the
dummy argument remain associated with the actual argument.

If both the dummy and actual arguments are targets, with the dummy argument

being either an explicit-shape array or an assumed-size array, while the actual
argument is not an array section with a vector subscript:

Program Units and Procedures 161

1. Whether any pointers associated with the actual argument become associated
with the corresponding dummy argument on invocation of the procedure is
processor dependent.

2. When execution of the procedure completes, whether any pointers associated
with the dummy argument remain associated with the actual argument is
processor dependent.

If the dummy argument is a target and the corresponding actual argument is not a
target or is an array section with a vector subscript, any pointers associated with
the dummy argument become undefined when execution of the procedure
completes.

Allocatable Objects as Dummy Arguments

An allocatable dummy argument has an actual argument which is also allocatable
associated with it. If the allocatable dummy argument is an array, the associated
actual argument must also be an array.

On procedure entry, the allocation status of an allocatable dummy argument
becomes that of the associated actual argument. If the dummy argument is
and the associated actual argument is currently allocated, the
actual argument is deallocated on procedure invocation so that the dummy
argument has an allocation status of not currently allocated. If the dummy

argument is not INTENT(OUT)| and the actual argument is currently allocated, the

value of the dummy argument is that of the associated actual argument.

While the procedure is active, an allocatable dummy argument that does not have
may be allocated, deallocated, defined, or become undefined. No
reference to the associated actual argument is permitted via another alias if any of
these events occur.

On exit from the routine, the actual argument has the allocation status of the
allocatable dummy argument (there is no change, of course, if the allocatable

dummy argument has INTENT(IN)). The usual rules apply for propagation of the

value from the dummy argument to the actual argument.

Automatic deallocation of the allocatable dummy argument does not occur as a
result of execution of a[RETURN| or [END| statement in the procedure of which it is
a dummy argument.

Note: An allocatable dummy argument that has the attribute must
not have its allocation status altered within the called procedure. The main
difference between such a dummy argument and a normal dummy
argument is that it might be unallocated on entry (and throughout execution
of the procedure).

Example
SUBROUTINE LOAD(ARRAY, FILE)
REAL, ALLOCATABLE, INTENT(OUT) :: ARRAY(:, :, :)

CHARACTER(LEN=+), INTENT(IN) :: FILE

INTEGER UNIT, N1, N2, N3

INTEGER, EXTERNAL :: GET_LUN

UNIT = GET_LUN() ! Returns an unused unit number
OPEN(UNIT, FILE=FILE, FORM='UNFORMATTED')
READ(UNIT) N1, N2, N3

ALLOCATE (ARRAY (N1, N2, N3))

162 XL Fortran Advanced Edition for Mac OS X: Language Reference

READ(UNIT) ARRAY
CLOSE(UNIT)
END SUBROUTINE LOAD

Pointers as Dummy Arguments

If a dummy argument is a pointer, the actual argument must be a pointer and their

types, type parameters, and ranks must match. The actual argument reference is to

the pointer itself, not to its target. When the procedure is invoked:

* The dummy argument acquires the pointer association status of the actual
argument.

* If the actual argument is associated, the dummy argument is associated with the
same target.

The association status can change during execution of the procedure. When the
procedure finishes executing, the dummy argument’s association status becomes
undefined, if it is associated.

| IBM Extension |

The passing method must be by reference; that is, % VAL or [VALUE| must not be
specified for the pointer actual argument.

| End of IBM Extension |

Procedures as Dummy Arguments

A dummy argument that is identified as a procedure is called a dummy procedure.
It can only be associated with an actual argument that is a specific intrinsic
procedure, module procedure, external procedure, or another dummy procedure.
See ["Intrinsic Procedures” on page 421| for details on which intrinsic procedures
can be passed as actual arguments.

The dummy procedure and corresponding actual argument must both be functions
or both be subroutines. Dummy arguments of the actual procedure argument must
match those of the dummy procedure argument. If they are functions, they must
match in type, type parameters, rank, shape (if they are nonpointer arrays), and
whether they are pointers. If the length of a function result is assumed, this is a
characteristic of the result. If the function result specifies a type parameter or array
bound that is not a constant expression, the dependence on the entities in the
expression is a characteristic of the result.

Dummy procedures that are subroutines are treated as if they have a type that is
different from the intrinsic data types, derived types, and alternate return
specifiers. Such dummy arguments only match actual arguments that are
subroutines or dummy procedures.

Internal subprograms cannot be associated with a dummy procedure argument.
The rules and restrictions for referencing a procedure described in
[References” on page 151p Fg5] You cannot use a non-intrinsic elemental
procedure as an actual argument in Fortran 95.

Examples of Procedures as Dummy Arguments

PROGRAM MYPROG
INTERFACE
SUBROUTINE SUB (ARG1)
EXTERNAL ARGl

Program Units and Procedures 163

INTEGER ARG1
END SUBROUTINE SUB
END INTERFACE
EXTERNAL IFUNC, RFUNC

REAL RFUNC
CALL SUB (IFUNC) I Valid reference
CALL SUB (RFUNC) I Invalid reference

1

I The first reference to SUB is valid because IFUNC becomes an
! implicitly declared integer, which then matches the explicit
! interface. The second reference is invalid because RFUNC is

I explicitly declared real, which does not match the explicit

I interface.

END PROGRAM

SUBROUTINE ROOTS
EXTERNAL NEG
X = QUAD(A,B,C,NEG)
RETURN

END

FUNCTION QUAD(A,B,C,FUNCT)
INTEGER FUNCT
VAL = FUNCT(A,B,C)
RETURN

END

FUNCTION NEG(A,B,C)
RETURN
END

Asterisks as Dummy Arguments

A dummy argument that is an asterisk can only appear in the dummy argument
list of a SUBROUTINE statement or an [ENTRY] statement in a subroutine
subprogram. The corresponding actual argument must be an alternate return

specifier, which indicates the statement label of a branch target statement in the
same scope as the CALL statement, to which control is returned.

Example of an Alternate Return Specifier
CALL SUB(*10)

STOP I STOP is never executed
10 PRINT *, 'RETURN 1'
CONTAINS
SUBROUTINE SUB(*)
RETURN 1 I Control returns to statement with label 10
END SUBROUTINE

END

Resolution of Procedure References

The subprogram name in a procedure reference is either established to be generic,
established to be only specific, or not established.

A subprogram name is established to be generic in a scoping unit if one or more of
the following is true:

* The scoping unit has an interface block with that name.
* The name of the subprogram is the same as the name of a generic intrinsic
procedure that is specified in the scoping unit with the INTRINSIC attribute.

* The scoping unit accesses the generic name from a module through use
association.

164 XL Fortran Advanced Edition for Mac OS X: Language Reference

There are no declarations of the subprogram name in the scoping unit, but the
name is established to be generic in the host scoping unit.

A subprogram name is established to be only specific in a scoping unit when it has
not been established to be generic and one of the following is true:

An interface body in the scoping unit has the same name.

There is a statement function, module procedure, or an internal subprogram in
the scoping unit that has the same name.

The name of the subprogram is the same as the name of a specific intrinsic
procedure that is specified with the INTRINSIC attribute in the scoping unit.

The scoping unit contains an EXTERNAL statement with the subprogram name.

The scoping unit accesses the specific name from a module through use
association.

There are no declarations of the subprogram name in the scoping unit, but the
name is established to be specific in the host scoping unit.

If a subprogram name is not established to be either generic nor specific, it is not
established.

Rules for Resolving Procedure References to Names

The following rules are used to resolve a procedure reference to a name established
to be generic:

1.

If there is an interface block with that name in the scoping unit or accessible
through use association, and the reference is consistent with a non-elemental
reference to one of the specific interfaces of that interface block, the reference is
to the specific procedure associated with the specific interface.

If Rule 1 does not apply, the reference is to an intrinsic procedure if the
procedure name in the scoping unit is specified with the INTRINSIC attribute
or accesses a module entity whose name is specified with the INTRINSIC
attribute, and the reference is consistent with the interface of that intrinsic
procedure.

If neither Rule 1 nor Rule 2 applies, but the name is established to be generic in
the host scoping unit, the name is resolved by applying Rule 1 and Rule 2 to
the host scoping unit. For this rule to apply, there must be agreement between
the host scoping unit and the scoping unit of which the name is either a
function or a subroutine.

If Rule 1, Rule 2 and Rule 3 do not apply, the reference must be to the generic
intrinsic procedure with that name.

The following rules are used to resolve a procedure reference to a name established
to be only specific:

1.

If the scoping unit is a subprogram, and it contains either an interface body
with that name or the name has the EXTERNAL attribute, and if the name is a
dummy argument of that subprogram, the dummy argument is a dummy
procedure. The reference is to that dummy procedure.

If Rule 1 does not apply, and the scoping unit contains either an interface body
with that name or the name has the EXTERNAL attribute, the reference is to an
external subprogram.

In the scoping unit, if a statement function or internal subprogram has that
name, the reference is to that procedure.

In the scoping unit, if the name has the INTRINSIC attribute, the reference is
to the intrinsic procedure with that name.

Program Units and Procedures 165

5. The scoping unit contains a reference to a name that is the name of a module
procedure that is accessed through use association. Because of possible
renaming in the USE statement, the name of the reference may differ from the
original procedure name.

6. If none of these rules apply, the reference is resolved by applying these rules to
the host scoping unit.

The following rules are used to resolve a procedure reference to a name that is not
established:

1. If the scoping unit is a subprogram and if the name is the name of a dummy
argument of that subprogram, the dummy argument is a dummy procedure.
The reference is to that dummy procedure.

2. If Rule 1 does not apply, and the name is the name of an intrinsic procedure,
the reference is to that intrinsic procedure. For this rule to apply, there must be
agreement between the intrinsic procedure definition and the reference that the
name is either a function or subroutine.

3. If neither Rule 1 nor 2 applies, the reference is to the external procedure with
that name.

Resolving Procedure References to Generic Names

When resolving a procedure reference to a generic name, the following rules apply:

* If the reference is consistent with one of the specific interfaces within a generic
interface of the same name, and either appears in the same scoping unit in
which the reference appears or is made accessible by a USE statement in the
scoping unit, then the reference is to that specific procedure.

o If the first rule fails then, if the reference is consistent with an elemental
reference to one of the specific interfaces within a generic interface of the same
name, and either appears in same scoping unit in which the reference appears or
is made accessible by a USE statement in the scoping unit, then the reference is
to the specific elemental procedure in that interface block that provides that
interface.

e If the previous two rules fail then, if the scoping unit contains for that name
either an INTRINSIC attribute specification or the name is made accessible from
a module in which the corresponding name is specified to have the INTRINSIC
attribute, and if the interface of that intrinsic procedure is consistent with the
reference, the reference will be to that intrinsic procedure.

e If the previous three rules fail then, if the scoping unit has a host scoping unit in
which the name is established to be generic within it, and there is an agreement
between the units on whether the name is a function or subroutine name, the
name will be resolved by applying these rules to the host scoping unit.

Recursion

A procedure that can reference itself, directly or indirectly, is called a recursive
procedure. Such a procedure can reference itself indefinitely until a specific
condition is met. For example, you can determine the factorial of the positive
integer N as follows:

INTEGER N, RESULT
READ (5,*) N
IF (N.GE.0) THEN
RESULT = FACTORIAL(N)
END IF
CONTAINS
RECURSIVE FUNCTION FACTORIAL (N) RESULT (RES)

166 XL Fortran Advanced Edition for Mac OS X: Language Reference

INTEGER RES
IF (N.EQ.0) THEN

RES =1
ELSE
RES = N * FACTORIAL(N-1)
END IF
END FUNCTION FACTORIAL

END

For details on syntax and rules, see["FUNCTION” on page 298)[‘SUBROUTINE"]
on page 372 | or["ENTRY” on page 283

| IBM Extension |

You can also call external procedures recursively when you specify the -qrecur
compiler option, although XL Fortran disregards this option if the procedure
specifies either the RECURSIVE or RESULT keyword.

| End of IBM Extension

Pure Procedures

| Fortran 95 |

Because pure procedures are free of side effects, the compiler is not constrained to
invoke them in any particular order. Exceptions to this are as follows:

* A pure function, because a value is returned.

A pure subroutine, because you can modify dummy arguments with an
INTENT| of OUT or INOUT or modify the association status or the value of

dummy arguments with the POINTER| attribute.

Pure procedures are particularly useful in [FORALL|statements and constructs,
which by design require that all referenced procedures be free of side effects.

A procedure must be pure in the following contexts:
* An internal procedure of a pure procedure

* A procedure referenced in the scalar_mask_expr or body of a[FORALL| statement
or construct, including one referenced by a defined operator or defined
assignment

* A procedure referenced in a pure procedure
* A procedure actual argument to a pure procedure

Intrinsic functions (except|RAND)} an XL Fortran extension) and the MVBITS

subroutine are always pure. They do not need to be explicitly declared to be pure.
A statement function is pure if and only if all functions that it references are pure.

The specification_part of a pure function must specify that all dummy arguments
have an INTENT(IN)| except procedure arguments, and arguments with the

|!ZOINTE!S| attribute. The specification_part of a pure subroutine must specify the

intents of all dummy arguments, except for procedure arguments, asterisks, and
arguments that have the POINTER attribute. Any interface body for such pure

procedures must similarly specify the intents of its dummy arguments.

The execution_part and internal_subprogram_part of a pure procedure cannot refer to
a dummy argument with an INTENT(IN)| a global variable (or any object that is

Program Units and Procedures 167

Fortran 95

storage associated with one), or any subobject thereof, in contexts that may cause

its value to change: that is, in contexts that produce side effects. The execution_part

and internal_subprogram_part of a pure function must not use a dummy argument,

a global variable, or an object that is storage associated with a global variable, or a

subobject thereof, in the following contexts:

* As variable in an assignment statement, or as expression in an assignment
statement if variable is of a derived type that has a pointer component at any
level

* As pointer_object or target in a pointer assignment statement

* Asa or implied-DO variable

* As an input_item in a statement

* As an internal file identifier in a statement

* As an IOSTAT= or SIZE= specifier variable in an input/output statement

* As a variable in an [ALLOCATABLE} [DEALLOCATE, [NULLIFY} or [ASSIGN|
statement

* As an actual argument that is associated with a dummy argument with the
OINTER| attribute or with an intent of [OUT| or INOUT]|

* As the argument to LOC
* As a STAT= specifier

* As a variable in a[NAMELIST| which appears in a statement

A pure procedure must not specify that any entity is [VOLATILE} In addition, it
must not contain any references to data that is VOLATILE, that would otherwise

be accessible through use- or host-association. This includes references to data
which occur through NAMELIST 1/0.

i

Only internal input/output is permitted in pure procedures. Therefore, the unit
identifier of an input/output statement must not be an asterisk (*) or refer to an
external unit. The input/output statements are:

* |BACKSPACE

€122
Zll=

* |OPE
RINT

=]

A=
EE
EU
jw]

=
&
=

The [PAUSE|and [STOP| statements are not permitted in pure procedures.

There are two differences between pure functions and pure subroutines:

1. Subroutine nonpointer dummy data objects may have any intent, while
function nonpointer dummy data objects must be INTENT(IN)

2. Subroutine dummy data objects with the [POINTER| attribute can change
association status and/or definition status

If a procedure is not defined as pure, it must not be declared pure in an interface
body. However, the converse is not true: if a procedure is defined as pure, it does
not need to be declared pure in an interface body. Of course, if an interface body
does not declare that a procedure is pure, that procedure (when referenced through

168 XL Fortran Advanced Edition for Mac OS X: Language Reference

Fortran 95

that explicit interface) cannot be used as a reference where only pure procedure
references are permitted (for example, in a [FORALL] statement).

Examples

PROGRAM ADD
INTEGER ARRAY(20,256)
INTERFACE I Interface required for
PURE FUNCTION PLUS_X(ARRAY) ! a pure procedure
INTEGER, INTENT(IN) :: ARRAY(:)
INTEGER :: PLUS_X(SIZE(ARRAY))
END FUNCTION
END INTERFACE
INTEGER :: X
X = ABS(-4) I Intrinsic function
! is always pure
FORALL (I=1:20, I /= 10)
ARRAY(I,:) = I + PLUS_X(ARRAY(I,:)) ! Procedure references in
I FORALL must be pure
END FORALL
END PROGRAM
PURE FUNCTION PLUS_X(ARRAY)
INTEGER, INTENT(IN) :: ARRAY(:)
INTEGER :: PLUS_X(SIZE(ARRAY)),X
INTERFACE
PURE SUBROUTINE PLUS_Y(ARRAY)
INTEGER, INTENT(INOUT) :: ARRAY(:)
END SUBROUTINE
END INTERFACE
X=8
PLUS_X = ARRAY+X
CALL PLUS_Y(PLUS_X)
END FUNCTION

PURE SUBROUTINE PLUS_Y(ARRAY)

INTEGER, INTENT(INOUT) :: ARRAY(:) ! Intent must be specified
INTEGER :: Y
Y=6

ARRAY = ARRAY+Y
END SUBROUTINE

| End of Fortran 95

Elemental Procedures

| Fortran 95 |

An elemental subprogram definition must have the ELEMENTAL prefix specifier.
If the ELEMENTAL prefix specifier is used, the RECURSIVE specifier cannot be
used.

You cannot use the -qrecur option when specifying elemental procedures.

An elemental subprogram is a pure subprogram. However, pure subprograms are
not necessarily elemental subprograms. For elemental subprograms, it is not
necessary to specify both the ELEMENTAL prefix specifier and the PURE prefix
specifier; the PURE prefix specifier is implied by the presence of the ELEMENTAL
prefix specifier. A standard conforming subprogram definition or interface body
can have both the PURE and ELEMENTAL prefix specifiers.

Program Units and Procedures 169

Fortran 95

Elemental procedures, subprograms, and user-defined elemental procedures must
conform to the following rules:

e The result of an elemental function must be a scalar, and must not have the
[ALLOCATABLE| or [POINTER|attribute.

* The following apply to dummy arguments used in elemental subprograms:

— All dummy arguments must be scalar, and must not have the
[ALLOCATABLE|or [POINTER] attribute.

— A dummy argument, or a subobject thereof, cannot be used in a specification
expression, except if it is used as an argument to the [BIT_SIZH, [KIND) or
intrinsic functions, or as an argument to one of the numeric inquiry
intrinsic functions, see [“Intrinsic Procedures” on page 421

— A dummy argument cannot be an asterisk.
— A dummy argument cannot be a dummy procedure.

* Elemental subprograms must follow all of the rules that apply to pure
subprograms, defined in [“Pure Procedures” on page 167

* Elemental subprograms can have statements, but the ENTRY statement
cannot have the ELEMENTAL prefix. The procedure defined by the ENTRY
statement is elemental if the ELEMENTAL prefix is specified in the
[SUBROUTINH or [FUNCTION] statement.

* Elemental procedures can be used as defined operators in elemental expressions,
but they must follow the rules for elemental expressions as described in
[“Operators and Expressions” on page 90

A reference to an elemental procedure is elemental only if:

* The reference is to an elemental function, one or more of the actual arguments is
an array, and all array actual arguments have the same shape; or

* The reference is to an elemental subroutine, and all actual arguments that
correspond to the and INTENT(INOUT) dummy arguments are
arrays that have the same shape. The remaining actual arguments are
conformable with them.

A reference to an elemental subprogram is not elemental if all of its arguments are
scalar.

The actual arguments in a reference to an elemental procedure can be either of the
following:

* All scalar. For elemental functions, if the arguments are all scalar, the result is
scalar.

* One or more array-valued. The following rules apply if one or more of the
arguments is array-valued:

— For elemental functions, the shape of the result is the same as the shape of the
array actual argument with the greatest rank. If more than one argument
appears then all actual arguments must be conformable.

— For elemental subroutines, all actual arguments associated with
and INTENT(INOUT) dummy arguments must be arrays of
the same shape, and the remaining actual arguments must be conformable
with them.

For elemental references, the resulting values of the elements are the same as
would be obtained if the subroutine or function had been applied separately in any
order to the corresponding elements of each array actual argument.

170 XL Fortran Advanced Edition for Mac OS X: Language Reference

Fortran 95

If the intrinsic subroutin is used, the arguments that correspond to the
TO and FROM dummy arguments may be the same variable. Apart from this, the
actual arguments in a reference to an elemental subroutine or elemental function
must satisfy the restrictions described in [“Argument Association” on page 156.|

Special rules apply to generic procedures that have an elemental specific
procedure, see [‘Resolving Procedure References to Generic Names” on page 166,

Examples
Example 1:

I Example of an elemental function
PROGRAM P
INTERFACE
ELEMENTAL REAL FUNCTION LOGN(X,N)
REAL, INTENT(IN) :: X
INTEGER, INTENT(IN) :: N
END FUNCTION LOGN
END INTERFACE

REAL RES(100), VAL(100,100)
DO 1-1,100

RES(I) = MAXVAL(LOGN(VAL(I,:),2))
END DO

END PROGRAM P

Program Units and Procedures 171

Fortran 95

Example 2:

I Elemental procedure declared with a generic interface
INTERFACE RAND
ELEMENTAL FUNCTION SCALAR_RAND(x)
REAL, INTENT(IN) :: X
END FUNCTION SCALAR_RAND

FUNCTION VECTOR_RANDOM(x)
REAL X(:)
REAL VECTOR_RANDOM(SIZE(x))
END FUNCTION VECTOR_RANDOM
END INTERFACE RAND

REAL A(10,10), AA(10,10)

I The actual argument AA is a two-dimensional array. The procedure

I taking AA as an argument is not declared in the interface block.

! The specific procedure SCALAR_RAND is then called.

A = RAND(AA)

! The actual argument is a one-dimensional array section. The procedure
I taking a one-dimensional array as an argument is declared in the

! interface block. The specific procedure VECTOR_RANDOM is then called.
!

This is a non-elemental reference since VECTOR RANDOM is not elemental.

A(:,1) = RAND(AA(6:10,2))
END

| End of Fortran 95

172 XL Fortran Advanced Edition for Mac OS X: Language Reference

Understanding XL Fortran Input/Output

XL Fortran supports synchronous input/output (I/O). Synchronous I/O halts an
executing application until I/O operations complete. Synchronous I/O types
support the following file access methods:

* [Sequential access|

* |Direct access

* |Stream access|
FEach method of access offers benefits and limitations based on the I/O concepts of

[Records] [Files|, and [Units}

This section also provides |explanations of the IOSTAT= specifier coded that can
result when using XL Fortran I/O statements.

Records

A record contains a sequence of characters or values. XL Fortran supports three
record types:

* [formatted
* [unformatted]
* [endfile

Formatted Records

A formatted record consists of a sequence of ASCII characters that can print in a
readable format. Reading a formatted record converts the data values from
readable characters into an internal representation. Writing a formatted record
converts the data from the internal representation into characters.

Unformatted Records

An unformatted record contains a sequence of values in an internal representation
that can contain both character and noncharacter data. An unformatted record can
also contain no data. Reading or writing an unformatted record does not convert
any data the record contains from the internal representation.

Endfile Records

An endfile record occurs at the end of a file connected for access and
occupies no storage. You can write an endfile record using
statement. You can also use a statement that executes as the last data
transfer statement and meets one of the following requirements:
+ A[BACKSPACE| or REWIND|statement occurs on the or connecting .
* The file closes, meeting one of the conditions listed below.

- A statement.

— An|OPEN|statement for the same unit, which implies a CLOSE statement for
the previous file.

— Program termination without an|error condition,

Another file positioning statement must not occur between the [WRITE|statement
and any of the previous requirements.

© Copyright IBM Corp. 1990, 2003 173

Files

Files

A file is an internal or external sequence of records or file storage units. You
determine the file access method when connecting a file to a You can access
an external file using three methods:

Sequential access|

Direct access

Stream access|

You can only access an internal file [sequentiallyj

Definition of an External File

You must associate an external file with an I/O device such as a disk, or terminal.
An external file exists for a program when a program creates that file, or the file is
available to that program for reading and writing. Deleting an external file ends
the existence of that file. An external file can exist and contain no

IBM Extension

To specify an external file by a file name, you must designate a valid operating
system file name. Each file name can contain a maximum of 255 characters. If you
specify a full path name, it can contain a maximum of 1023 characters.

End of IBM Extension

The preceding I/0O statement determines the position of an external file. You can
position an external file to:

The initial point, which is the position immediately before the first record, or the
first file storage unit.

The terminal point, which is the position immediately after the last record, or
the last file storage unit.

The current record, when the file position is within a record. Otherwise, there is
no current record.

The preceding record, which is the record immediately before the current record.
If there is no current record, the preceding record is the record immediately
before the current file position. A preceding record does not exist when the file
position is at its initial point or within the first record of the file.

The next record, which is the record immediately after the current record. If
there is no current record, the next record is the record immediately after the
current position. The next record does not exist when the file position is at the
terminal point or within the last record of the file.

An indeterminate position after an error.

File Access Methods

Sequential Access

Using sequential access, in a file are read or written based on the logical
order of records in that file. Sequential access supports both and external
files.

External Files: A file connected for sequential access contains records in the order
they were written. The records must be either all or all the

174 XL Fortran Advanced Edition for Mac OS X: Language Reference

Sequential Access

last record of the file must be an fendfile record] The records must not be read or
written by [direct| or [stream access| /O statements during the time the file is
connected for sequential access.

Internal Files: An internal file is a character variable that is not an array section
with a [vector subscript} You do not need to create internal files. They always exist,
and are available to the application.

If an internal file is a scalar character variable, the file consists of one record with a
length equal to that of the scalar variable. If an internal file is a character array,
each element of the array is a record of the file, with each record having the same
length.

An internal file must contain only [formatted records| READ|and |WRITH are the
only statements that can specify an internal file. If a WRITE statement writes less
than an entire record, blanks fill the remainder of that record.

Direct Access
Using direct access, the records of anile can be read or written in any

order. The records must be either all [formatted] or all Junformatted| The records
must not be read or written using lsequential| or [stream| access, list-directed
formatting, namelist formatting, or a nonadvancing input/output statement. If the
file was previously connected for sequential access, the last record of the file is an
The endfile record is not considered a part of the file connected for

direct access.

Each record in a file connected for direct access has a record number that identifies
its order in the file. The record number is an integer value that must be specified
when the record is read or written. Records are numbered sequentially. The first
record is number 1. Records need not be read or written in the order of their
record numbers. For example, records 9, 5, and 11 can be written in that order
without writing the intermediate records.

All records in a file connected for direct access must have the same length, which
is specified in the |OPEN]|statement when the file is connected.

Records in a file connected for direct access cannot be deleted, but they can be
rewritten with a new value. A record cannot be read unless it has first been
written.

Stream Access

| IBM Extension |

You can connect files for stream access as either [formatted| or [unformatted}
Both forms use external stream files composed of one byte file storage units. While
a file connected for unformatted stream access has only a stream structure, files
connected for formatted stream access have both a record and a stream structure.
These dual structure files have the following characteristics:

¢ Some file storage units represent record markers.

* The record structure is inferred from the record markers stored in the file.
* There is no theoretical limit on record length.

* Writing an empty record without a record marker has no effect.

* If there is no record marker at the end of a file, the final record is incomplete but
not empty.

Understanding XL Fortran Input/Output 175

Stream Access

* Thelendfile record|in a file previously connected for sequential access is not

considered part of the file when you connect that file for stream access.

The first file storage unit of a file connected for formatted stream access has a
position of 1. The position of each subsequent storage unit is greater than the
storage unit immediately before it. The positions of successive storage units are not
always consecutive and positionable files need not be read or written to in order of
position. To determine _the position of a file storage unit connected for formatted
stream access, use the specifier of the statement. If the file can be
positioned, you can use the value obtained using the INQUIRE statement to
position that file. You read from the file while connected to the file, as long as the
storage unit has been written to since file creation and that the connection permits
a statement. File storage units of a file connected for formatted stream
access can only be read or written by formatted stream access input/output
statements.

The first file storage unit of a file connected for unformatted stream access has a
position of 1. The position value of successive storage units is incrementally one
greater than the storage unit it follows. Positionable files need not be read or
written to in order of position. Any storage unit can be read from the file while
connected to the file, if the storage unit has been written to since file creation and
that the connection permits a statement. File storage units of a file
connected for unformatted stream access can only be read or written by stream
access input/output statements.

| End of IBM Extension

Units

A unit is a means of referring to an external file. Programs refer to external files by
the unit numbers indicated by unit specifiers in input/output statements. See

[UNIT=]| for the form of a unit specifier.

Connection of a Unit

A connection refers to the association between an fexternal filel and a unit. A
connection must occur before the records of a file can be read or written.

There are three ways to connect a file to a unit:

¢ |Preconnectio

* p_Bm_|[Implicit connection|[em 4
» Explicit connection, using the [OPEN]| statement

Preconnection

Preconnection occurs when the program begins executing. You can specif
preconnection in I/O statements without the prior execution of an |[OPEN

statement.

| IBM Extension |

Using formatted [sequential access| always preconnects units 0, 5 and 6 as unnamed
files to the devices below:

* Unit 0 to the standard error device
* Unit 5 to the standard input device
* Unit 6 to the standard output device

176 XL Fortran Advanced Edition for Mac OS X: Language Reference

Units

The files retain default specifier values for the statement with the following
exceptions:

- [STATUS="OLD/|
- [ACTION="READWRITE]
FORM="FORMATTED/|

| End of IBM Extension

Implicit Connection

| IBM Extension |

Implicit connection occurs when a |sequentiai| statement that is; [ENDFILE] [PRINT]
READ| [REWIND| or WRITE| executes on a unit not already connected to an
external fild The executing statement connects that unit to a file with a
predetermined name. By default, this connection is unit to file fort.n. You do not
need to create the file before implicit connection. To implicitly connect to a
different file name, see the UNIT_VARS run-time option under [Setting Run-Time|
[Options| in the [User’s Guide]

You can not specify unit 0 for implicit connection.

You can only connect aunit implicitly if you terminate the

connection between the unit and the external file. In the next example a
preconnected unit closes before implicit connection takes place.

Sample Implicit Connection

PROGRAM TRYME

WRITE (6, 10) "Hellol" ! "Hellol" written to standard output
CLOSE (6)
WRITE (6, 10) "Hello2" ! "Hello2" written to fort.6
10 FORMAT (A)
END

A unit with an implicit connection uses the default specifier values of the|OPEN
statement, except for the[FORM=|specifier. The first data transfer statement
determines the value of FORM=.

If the first I/O statement uses format directed, list directed, or namelist formatting,
the value of the specifier is set to FORMATTED. An unformatted 1/0O
statement sets the specifier to UNFORMATTED.

| End of IBM Extension |

Disconnection

The ‘ statement disconnects a file from a unit. You can connect the file again
within the same program to the same unit or to a different unit. You can connect
the unit again within the same program to the same file or a different file.

IBM Extension

* You can not close unit 0
* You can not reconnect unit 5 to standard input after the unit closes
* You can not reconnect unit 6 to standard output after the unit closes

| End of IBM Extension |

Understanding XL Fortran Input/Output 177

Data Transfer

Data Transfer Statements

The [READ)| statement obtains data from an fexternal| or [internal| file and transfers
the data to internal storage. If you specify an input list, values transfer from the
file to the data items you specify.

The statement transfers data from internal storage into an external or
internal file.

The statement transfers data from internal storage into an external file.
Specifying the —qport=typestmt compiler option enables the TYPE statement which
supports functionality identical to PRINT. If you specify an output list and format
specification, values transfer to the file from the data items you specify. If you do
not specify an output list, the PRINT statement transfers a blank record to the
output device unless the statement it refers to contains, as the first
specification, a character string edit descriptor or a slash edit descriptor. In this
case, the records these specifications indicate transfer to the output device.

Execution of a WRITE or PRINT statement for a file that does not exist creates
that file, unless an error occurs.

Zero-sized arrays and implied-DO lists with iteration counts of zero are ignored
when determining the next item to be processed. Zero-length scalar character items
are not ignored.

If an input/output item is a pointer, data transfers between the file and the
associated target.

During advancing input from a file with a PAD= specifier that has the value NO,
the input list and format specification must not require more characters from the
record than that record contains. If the PAD= specifier has the value YES, or if the
input file is an internal file, blank characters are supplied if the input list and
format specification require more characters from the record than the record
contains.

| IBM Extension |

If you want to pad only external files connected for sequential access, specify the
Fqx1f77=noblankpad| compiler option. This compiler option also sets the default
value for the PAD= specifier to NO for direct and stream files and YES for
sequential files.

| End of IBM Extension |

During nonadvancing input from a file with a PAD= specifier that has the value
NO, an end-of-record condition occurs if the input list and format specification
require more characters from the record than the record contains. If the PAD=
specifier has the value YES, an end-of-record condition occurs and blank characters
are supplied if an input item and its corresponding data edit descriptor require
more characters from the record than the record contains. If the record is the last
record of a stream file, an jend-of-file condition| occurs.

Advancing and Nonadvancing Input/Output

Advancing I/O positions a file after the last record that is read or written,
unless an error condition occurs.

178 XL Fortran Advanced Edition for Mac OS X: Language Reference

Data Transfer

Nonadvancing I/O can position the file at a character position within the current
or a subsequent record. With nonadvancing 1/0, you can [READ]| or WRITE|
a record of the file by a sequence of I/O statements that each access a portion of
the record. You can also read variable-length records and inquire about the length
of the records.

Nonadvancing I/O
I Reads digits using nonadvancing input

INTEGER COUNT

CHARACTER(1) DIGIT

OPEN (7)

DO

READ (7,FMT="(A1)",ADVANCE="NO",EOR=100) DIGIT
COUNT = COUNT + 1

IF ((ICHAR(DIGIT).LT.ICHAR('0')).OR.(ICHAR(DIGIT).GT.ICHAR('9'))) THEN
PRINT *,"Invalid character ", DIGIT, " at record position ",COUNT
STOP

END IF

END DO

100 PRINT =,"Number of digits in record = ", COUNT
END

I When the contents of fort.7 is '1234\n', the output is:

! Number of digits in record = 4

File Position Before and After Data Transfer

For an explicit connection using an |OPEN| statement for [sequential| or [stream|1/O
that specifies the [POSITION=| specifier, you can position the file explicitly at the
beginning, at the end, where the position is on opening.

If the OPEN statement does not specify the POSITION= specifier:

e If the [STATUS=| specifier has the value NEW or SCRATCH, the file position is
at the beginning.

IBM Extension

* If you specify [STATUS="OLD’| with the |qposition=appendold| compiler option,
and the next operation that changes the file position is a |WRITE| statement, then
the file position is at the end. If these conditions are not met, the file position is
at the beginning.

* If you specify [STATUS="UNKNOWN'| with the [qposition=appendunknown|
compiler option, and the next operation is a WRITE|statement, then the file
position is at the end. If all these conditions are not met, the file position is at
the beginning.

After an implicit the file position is at the beginning:

e If the first I/O operation on the file is[READ} the application reads the first
record of the file.

e If the first I/O operation on the file is|WRITE, the application deletes the
contents of the file and writes at the first record.

| End of IBM Extension

Understanding XL Fortran Input/Output 179

Data Transfer

You can use a[REWIND| statement to position a file at the beginning. The
[preconnected| units 0, 5 and 6 are positioned as they come from the parent process
of the application.

The positioning of a file prior to data transfer depends on the method of access:

Sequential access| for an external file:

— For advancing input, the file position is at the beginning of the next
This record becomes the current record.

— Advancing output creates a new record and becomes the last record of the
file.

Sequential access| for an internal file:

— File position is at the beginning of the first of the file. This record
becomes the current record.

* |Direct access

— File position is at the beginning of the record that the record specifier
indicates. This record becomes the current record.

e |Stream access

— File position is immediately before the file storage unit the POS= specifier
indicates. If there is no POS= specifier, the file position remains unchanged.

After fadvancing I/0 data transfer] the file position is:

* Beyond the endfile record if an end-of-file condition exists as a result of reading
an ndfile record

* Beyond the last record read or written if no error or end-of-file condition exists.
That last record becomes the preceding record. A record written on a file
connected for sequential or formatted stream access becomes the last record of
the file.

After jnonadvancing input|the file position:

e If no error condition or end-of-file condition occurs, but an end-of-record
condition occurs, the file position is immediately after the record read.

* If no error condition, end-of-file condition or end-of-record condition occurs in a
nonadvancing input statement, the file position does not change.

* If no error condition occurs in a nonadvancing output statement, the file
position does not change.

¢ In all other cases, the file position is immediately after the record read or written
and that record becomes the preceding record.

If the file position is beyond the [endfile record} a READ| [WRITE} [PRINT} or
—NDFILE statement can not execute if the compiler option is not

set. A|BACKSPACE|or |REWIND| statement can be used to reposition the file.

| IBM Extension

Use the |-qx1f77=softeof| option to be able to read and write past the end-of-file.

| End of IBM Extension

For formatted stream output with no errors, the terminal point of the file is set to
the highest-numbered position to which data was transferred by the statement. For
unformatted stream output with no errors, the file position is unchanged. If the file
position exceeds the previous terminal point of the file, the terminal point is set to

180 XL Fortran Advanced Edition for Mac OS X: Language Reference

Data Transfer

the file position. Use the POS= specifier with an empty output list to extend the
terminal point of the file without writing data. After data transfer, if an error
occurs, the file position is indeterminate.

Conditions and IOSTAT Values

An IOSTAT= specifier value assigns a value to a variable if an
|condition|, |end—of—record condition| or an error condition occurs during an
input/output statement. The IOSTAT= specifier reports the following types of
error conditions:

. Catastrophicl
* [Severe
. Recoverablgl
. :Conversioil

End-Of-Record Conditions

When an application encounters an end-of-record condition with the IOSTAT=
specifier, it sets the value to -4 and branches to the EOR= label if that label is
present. If the IOSTAT= and EOR= specifiers are not present on the I/O statement
when an application encounters an end-of-record condition, the application stops.

Table 6. IOSTAT Values for End-Of-Record Conditions

IOSTAT
Value |End-of-Record Condition Description

-4 End of record encountered on a nonadvancing, format-directed READ of an

external file

End-Of-File Conditions

An end-of-file condition can occur in the following instances:
* At the beginning of the execution of an input statement.

* During execution of a formatted input statement that requires more than one
record through the interaction of the input list and the format.

* During execution of a stream input statement.

For stream access, an end-of-file condition occurs when you attempt to read
beyond the end of a file. An end-of-file condition also occurs if you attempt to read
beyond the last record of a stream file connected for formatted access.

An end-of-file condition causes IOSTAT= to be set to one of the values defined
below and branches to the the END= label if these specifiers are present on the
input statement. If the IOSTAT= and END= specifiers are not present on the input
statement when an end-of-file condition is encountered, the program stops.

Table 7. IOSTAT Values for End-Of-File Conditions

IOSTAT
Value |End-of-File Condition Description

-1 End of file encountered on sequential or stream READ of an external file, or
END-= is specified on a direct access read and the record is nonexistent.

-2 End of file encountered on READ of an internal file.

Understanding XL Fortran Input/Output 181

IBM Extension

Error Conditions

Catastrophic Errors
Catastrophic errors are system-level errors encountered within the run-time system

that prevent further execution of the program. When a catastrophic error occurs, a
short (non-translated) message is written to unit 0, followed by a call to the C
library routine abort(). A core dump can result, depending on how you configure
your execution environment.

Severe Errors
A severe error cannot be recovered from, even if the ERR_RECOVERY run-time

option has been specified with the value YES. A severe error causes the IOSTAT=
specifier to be set to one of the values defined below and the ERR= label to be
branched to if these specifiers are present on the input/output statement. If the
IOSTAT= and ERR= specifiers are not present on the input/output statement
when a severe error condition is encountered, the program stops.

Table 8. IOSTAT Values for Severe Error Conditions

IOSTAT
Value Error Description
1 END-= is not specified on a direct access READ and the record is
nonexistent.
2 End of file encountered on WRITE of an internal file.
6 File cannot be found and STATUS="OLD’ is specified on an OPEN
statement.
10 Read error on direct file.
11 Write error on direct file.
12 Read error on sequential or stream file.
13 Write error on [sequential| or [stream| file.
14 Error opening file.
15 Permanent I/O error encountered on file.
37 Dynamic memory allocation failure - out of memory.
38 REWIND error.
39 ENDFILE error.
40 BACKSPACE error.
107 File exists and STATUS="NEW’ was specified on an OPEN statement.
122 Incomplete record encountered during direct access READ.
130 ACTION="READWRITE’ specified on an OPEN statement to connect a pipe.
135 The user program is making calls to an unsupported version of the XL
Fortran run-time environment.
139 I/0O operation not permitted on the unit because the file was not opened
with an appropriate value for the ACTION= specifier.
142 CLOSE error.
144 INQUIRE error.
152 ACCESS="DIRECT" is specified on an OPEN statement for a file that can
only be accessed sequentially.
153 POSITION="REWIND" or POSITION="APPEND" is specified on an OPEN
statement and the file is a pipe.
156 Invalid value for RECL= specifier on an OPEN statement.

182 XL Fortran Advanced Edition for Mac OS X: Language Reference

IBM Extension

Table 8. IOSTAT Values for Severe Error Conditions (continued)

IOSTAT
Value Error Description

159 External file input could not be flushed because the associated device is not
seekable.

165 The record number of the next record that can be read or written is out of
the range of the variable specified with the NEXTREC= specifier of the
INQUIRE statement.

183 The maximum record length for the unit is out of the range of the scalar
variable specified with the RECL= specifier in the INQUIRE statement.

184 The number of bytes of data transmitted is out of the range of the scalar
variable specified with the SIZE= or NUM= specifier in the I/O statement.

186 Unit numbers must be between 0 and 2,147,483,647.

192 The value of the file position is out of the range of the scalar variable
specified with the POS= specifier in the INQUIRE statement.

193 The value of the file size is out of the range of the scalar variable specified
with the SIZE= specifier in the INQUIRE statement.

Recoverable Errors

A recoverable error is an error that can be recovered from. A recoverable error
causes the IOSTAT= specifier to be set to one of the values defined below and the
ERR= label to be branched to if these specifiers are present on the input/output
statement. If the IOSTAT= and ERR= specifiers are not present on the
input/output statement and the ERR_RECOVERY run-time option is set to YES,
recovery action occurs and the program continues. If the IOSTAT= and ERR=
specifiers are not present on the input/output statement and the ERR_RECOVERY
option is set to NO, the program stops.

Table 9. IOSTAT Values for Recoverable Error Conditions

IOSTAT
Value |Error Description

16 Value of REC= specifier invalid on direct I/0O.

17 1/0 statement not allowed on direct file.

18 Direct I/0O statement on an unconnected unit.

19 Unformatted I/O attempted on formatted file.

20 Formatted I/O attempted on unformatted file.

21 Sequential or stream I/O attempted on direct file.
22 Direct I/O attempted on sequential or stream file.
23 Attempt to connect a file that is already connected to another unit.

24 OPEN specifiers do not match the connected file’s attributes.

25 RECL= specifier omitted on an OPEN statement for a direct file.

26 RECL= specifier on an OPEN statement is negative.
27 ACCESS= specifier on an OPEN statement is invalid.

28 FORMS= specifier on an OPEN statement is invalid.

29 STATUS= specifier on an OPEN statement is invalid.

30 BLANK= specifier on an OPEN statement is invalid.

31 FILE= specifier on an OPEN or INQUIRE statement is invalid.

Understanding XL Fortran Input/Output 183

IBM Extension

Table 9. IOSTAT Values for Recoverable Error Conditions (continued)

IOSTAT
Value |Error Description

32 STATUS="SCRATCH’ and FILE= specifier specified on same OPEN statement.

33 STATUS="KEEP’ specified on CLOSE statement when file was opened with
STATUS="SCRATCH’.

34 Value of STATUS= specifier on CLOSE statement is invalid.

36 Invalid unit number specified in an I/O statement.

47 A namelist input item was specified with one or more components of nonzero
rank.

48 A namelist input item specified a zero-sized array.

58 Format specification error.

93 I/0 statement not allowed on error unit (unit 0).

110 Illegal edit descriptor used with a data item in formatted I/0O.

120 | The NLWIDTH setting exceeds the length of a record.

125 BLANK= specifier given on an OPEN statement for an unformatted file.

127 | POSITION= specifier given on an OPEN statement for a direct file.

128 POSITION= specifier value on an OPEN statement is invalid.

129 | ACTION= specifier value on an OPEN statement is invalid.

131 DELIM= specifier given on an OPEN statement for an unformatted file.

132 | DELIM= specifier value on an OPEN statement is invalid.

133 | PAD= specifier given on an OPEN statement for an unformatted file.

134 | PAD= specifier value on an OPEN statement is invalid.

136 ADVANCE-= specifier value on a READ statement is invalid.

137 | ADVANCE='NO’ is not specified when SIZE= is specified on a READ statement.

138 | ADVANCE='NO'’ is not specified when EOR= is specified on a READ statement.

145 READ or WRITE attempted when file is positioned after the endfile record.

163 | Multiple connections to a file located on a non-random access device are not
allowed.

164 | Multiple connections with ACTION="WRITE’ or ACTION="READWRITE" are
not allowed.

191 The RECL= specifier is specified on an OPEN statement that has
ACCESS="STREAM".

194 The BACKSPACE statement specifies a unit connected for unformatted stream
I/0.

195 |POS= specifier on an I/O statement is less than one.

196 | The stream I/O statement cannot be performed on the unit because the unit is
not connected for stream access.

197 POS= specifier on an I/O statement for a unit connected to a non-seekable file.

198 Stream I/0O statement on an unconnected unit.

Conversion Errors

A conversion error occurs as a result of invalid data or the incorrect length of data
in a data transfer statement. A conversion error causes the IOSTAT= specifier to be
set to one of the values defined below and the ERR= label to be branched to if
these specifiers are present on the input/output statement and the CNVERR

184 XL Fortran Advanced Edition for Mac OS X: Language Reference

IBM Extension

option is set to YES. If the IOSTAT= and ERR= specifiers are not present on the
input/output statement, both the CNVERR option and the ERR_RECOVERY
option are set to YES, recovery action is performed and the program continues. If
the IOSTAT= and ERR= specifiers are not present on the input/output statement,
the CNVERR option is set to YES, the ERR_RECOVERY option is set to NO, and
the program stops. If CNVERR is set to NO, the ERR= label is never branched to
but the IOSTAT= specifier may be set, as indicated below.

Table 10. IOSTAT Values for Conversion Error Conditions

input in internal file.

IOSTAT IOSTAT set if
Value Error Description CNVERR=NO

3 End of record encountered on an unformatted file. no

4 End of record encountered on a formatted external file no
using advancing 1/0.

5 End of record encountered on an internal file. no

7 Incorrect format of list-directed input found in an external yes
file.

8 Incorrect format of list-directed input found in an internal yes
file.

9 List-directed or NAMELIST data item too long for the yes
internal file.

41 Valid logical input not found in external file. no

42 Valid logical input not found in internal file. no

43 Complex value expected using list-directed or NAMELIST no
input in external file but not found.

44 Complex value expected using list-directed or NAMELIST no
input in internal file but not found.

45 NAMELIST item name specified with unknown or invalid no
derived-type component name in NAMELIST input.

46 NAMELIST item name specified with an invalid substring no
range in NAMELIST input.

49 List-directed or namelist input contained an invalid no
delimited character string.

56 Invalid digit found in input for B, O or Z format edit no
descriptors.

84 NAMELIST group header not found in external file. yes

85 NAMELIST group header not found in internal file. yes

86 Invalid NAMELIST input value found in external file. no

87 Invalid NAMELIST input value found in internal file. no

88 Invalid name found in NAMELIST input. no

90 Invalid character in NAMELIST group or item name in no
input.

91 Invalid NAMELIST input syntax. no

92 Invalid subscript list for NAMELIST item in input. no

94 Invalid repeat specifier for list-directed or NAMELIST no
input in external file.

95 Invalid repeat specifier for list-directed or NAMELIST no

Understanding XL Fortran Input/Output

185

IBM Extension

Table 10. IOSTAT Values for Conversion Error Conditions (continued)

IOSTAT IOSTAT set if
Value Error Description CNVERR=NO
96 Integer overflow in input. no
97 Invalid decimal digit found in input. no
98 Input too long for B, O or Z format edit descriptors. no
121 Output length of NAMELIST item name or NAMELIST yes
group name is longer than the maximum record length or
the output width specified by the NLWIDTH option.

Fortran 90 and Fortran 95 Language Errors
A Fortran 90 language error results from the use of XL Fortran extensions to the

Fortran 90 language that cannot be detected at compile time. A Fortran 90
language error is considered a severe error when the LANGLVL run-time option
has been specified with the value 90STD and the ERR_RECOVERY run-time
option has either not been set or is set to NO. If both LANGLVL=90STD and
ERR_RECOVERY=YES have been specified, the error is considered a recoverable
error. If LANGLVL= EXTENDED is specified, the error condition is not considered
an error.

A Fortran 95 language error results from the use of XL Fortran extensions to the
Fortran 95 language that cannot be detected at compile time. A Fortran 95
language error is considered a severe error when the LANGLVL run-time option
has been specified with the value 95STD and the ERR_RECOVERY run-time
option has either not been set or is set to NO. If both LANGLVL=95STD and
ERR_RECOVERY=YES have been specified, the error is considered a recoverable
error. If LANGLVL=EXTENDED is specified, the error condition is not considered
an error.

Table 11. IOSTAT Values for Fortran 90 and Fortran 95 Language Error Conditions

IOSTAT
Value |Error Description

53 Mismatched edit descriptor and item type in formatted I/0.

58 Format specification error.

140 | Unit is not connected when the I/O statement is attempted. Only for READ,
WRITE, PRINT, REWIND, and ENDFILE.

141 Two ENDFILE statements without an intervening REWIND or BACKSPACE on
the unit.

151 The FILE= specifier is missing and the STATUS= specifier does not have a value
of 'SCRATCH’ on an OPEN statement.

187 | NAMELIST comments are not allowed by the Fortran 90 standard.

199 STREAM is not a valid value for the ACCESS= specifier on an OPEN statement
in Fortran 90 or Fortran 95.

186 XL Fortran Advanced Edition for Mac OS X: Language Reference

Input/Output Formatting

Formatted READ, WRITE, and PRINT statements use formatting information to
direct the editing (conversion) between internal data representations and character
representations in formatted records (see [“FORMAT” on page 293).

This section describes:

* [“Format-Directed Formatting”|

* |“Editing” on page 189

» [“Interaction between Input/Output Lists and Format Specifications” on page 211|
* [“List-Directed Formatting” on page 212

* ["Namelist Formatting” on page 215|

Format-Directed Formatting

In format-directed formatting, editing is controlled by edit descriptors in a format
specification. A format specification is specified in a FORMAT statement or as the

value of a character array or character expression in a |data transfer] statement.

Data Edit Descriptors

Forms Use Page

A Edits character values 191

Aw

Bw Edits binary values 191

Bw.m

Ew.d Edits real and complex numbers with exponents 193]

Ew.dEe

Ew.dDe *

Ew.dQe *

Dw.d

ENw.d

ENw.dEe

ESw.d

ESw.dEe

Quw.d *

Fw.d Edits real and complex numbers without exponents 197

Guw.d Edits data fields of any intrinsic type, with the output 198]

Guw.dEe format adapting to the type of the data and, if the data is

Gw.dDe * of type real, the magnitude of the data

Guw.dQe *

Tw Edits integer numbers

Tw.m

Lw Edits logical values 201

Ow Edits octal values 201

Ow.m

Q= Returns the count of characters remaining in an input
record *

Zw Edits hexadecimal values 204]

Zw.m

© Copyright IBM Corp. 1990, 2003 187

Note: * IBM Extensions

where:

w specifies the width of a field, including all blanks. It must be positive
except in Fortran 95, where it can be zero for I, B, O, Z, and F
edit descriptors on output[re5 4

m specifies the number of digits to be printed

d specifies the number of digits to the right of the decimal point

e specifies the number of digits in the exponent field

w, m, d, and e can be:
* An unsigned integer literal constant

| IBM Extension

* A scalar integer expression enclosed by angle brackets (< and >). See
[Format Expressions” on page 297| for details.

| End of IBM Extension

You cannot specify kind parameters for w, m, d, or e.

| IBM Extension
Note:

There are two types of Q data edit descriptor (Qw.d and Q):

extended precision Q
is the Q edit descriptor whose syntax is Qw.d

character count Q
is the Q edit descriptor whose syntax is Q

| End of IBM Extension

Control Edit Descriptors

Forms Use Page
/ Specifies the end of data transfer on the current record 205
r/
Specifies the end of format control if there are no more
items in the input/output list
$* Suppresses end-of-record in output * 206|*
BN Ignores nonleading blanks in numeric input fields 207
BZ Interprets nonleading blanks in numeric input fields as
Zeros
kP Specifies a scale factor for real and complex items
S SS Specifies that plus signs are not to be written
SP Specifies that plus signs are to be written 209

188 XL Fortran Advanced Edition for Mac OS X: Language Reference

Forms

Use Page

Tc

Specifies the absolute position in a record from which, or |[210
to which, the next character is transferred

TLc

Specifies the relative position (backward from the current |[210
position in a record) from which, or to which, the next
character is transferred

TRc

Specifies the relative position (forward from the current
position in a record) from which, or to which, the next
character is transferred

oX

Specifies the relative position (forward from the current 210
position in a record) from which, or to which, the next
character is transferred

Note: * IBM Extension

where:

r

k

is a repeat specifier. It is an unsigned, positive, integer literal constant.

specifies the scale factor to be used. It is an optionally signed, integer
literal constant.

specifies the character position in a record. It is an unsigned, nonzero,
integer literal constant.

is the relative character position in a record. It is an unsigned, nonzero,
integer literal constant.

IBM Extension |

7, k, c, and o can also be expressed as an arithmetic expression enclosed by angle
brackets (< and >) that evaluates into an integer value.

End of IBM Extension |

Kind type parameters cannot be specified for 7, k, c, or o.

Character String Edit Descriptors

Forms Use Page
nHstr Outputs a character string (str) 208
"str’ Outputs a character string (str) 207
”St]"”

n is the number of characters in a literal field. It is an unsigned, positive,

integer literal constant. Blanks are included in character count. A kind type
parameter cannot be specified.

Editing

Editing is performed on fields. A field is the part of a record that is read on input
or written on output when format control processes one of the data or character
string edit descriptors. The field width is the size of the field in characters.

Input/Output Formatting 189

The I F, E, EN, ES, B, O, Z, D, G, and extended precision Q edit descriptors are
collectively called numeric edit descriptors. They are used to format integer, real,
and complex data. The following general rules apply to these edit descriptors:

e On input:

- Leading blanks are not significant. The interpretation of other blanks is
controlled by the BLANK= specifier in the statement and the BN and
BZ edit descriptors. A field of all blanks is considered to be zero. Plus signs
are optional, although they cannot be specified for the B, O, and Z edit
descriptors.

- InF, E, EN, ES, D, G, and extended precision Q editing, a decimal point
appearing in the input field overrides the portion of an edit descriptor that
specifies the decimal point location. The field can have more digits than can
be represented internally.

* On output:

— Characters are right-justified inside the field. Leading blanks are supplied if
the editing process produces fewer characters than the field width. If the
number of characters is greater than the field width, or if an exponent
exceeds its specified length, the entire field is filled with asterisks.

— A negative value is prefixed with a minus sign. By default, a positive or zero

value is unsigned; it can be prefixed with a plus sign, as controlled by the S,
SP, and SS edit descriptors.

| Fortran 95

— Depending on whether you specify the signedzero or nosignedzero
suboptions for the -qx1f90 compiler option the following will result for the E,
D, Q(Extended Precision), F, EN, ES or G(General Editing) edit descriptors:

- when the signedzero suboption is chosen, and the internal value is
negative or a negative zero on output, a minus sign always be written out
to the output field, even if the output value is zero. The Fortran 95
standard requires this behavior.

| IBM Extension

Note that in XL Fortran, a REAL(16) internal value of zero is never treated
as a negative zero.

| End of IBM Extension

- when the nosignedzero suboption is chosen, and the output value is zero,
no minus sign will be written out to the output field, even if the internal
value was negative. The Fortran 90 standard requires this behavior, and is
consistent with the behavior of XL Fortran.

| End of Fortran 95

| IBM Extension

— In XL Fortran, a NaN (not a number) is indicated by “NAN”, “+NAN”, or “-NAN".
Infinity is indicated by “INF”, “+INF”, or “-INF”.

| End of IBM Extension

190 XL Fortran Advanced Edition for Mac OS X: Language Reference

Notes:

1. The ES and EN edit descriptors will behave the same for both the
signedzero and nosignedzero suboptions when the internal value is
non-zero. That is, the minus sign will be printed out whenever the value is
negative.

2. In the examples of edit descriptors, a lowercase b in the Qutput column
indicates that a blank appears at that position.

Complex Editing

A complex value is a pair of separate real components. Therefore, complex editing
is specified by a pair of edit descriptors. The first one edits the real part of the
number, and the second one edits the imaginary part of the number. The two edit
descriptors can be the same or different. One or more control edit descriptors can
be placed between them, but not data edit descriptors.

Data Edit Descriptors

A (Character) Editing

Forms:
A
Aw

The A edit descriptor directs the editing of character values. It can correspond to
an input/output list item of type character or any other type. The kind type
parameter of all characters transferred and converted is implied by the
corresponding list item.

On input, if w is greater than or equal to the length (call it len) of the input list
item, the rightmost len characters are taken from the input field. If the specified
field width is less than len, the w characters are left-justified, with (len - w)
trailing blanks added.

On output, if w is greater than len, the output field consists of (w - len) blanks
followed by the len characters from the internal representation. If w is less than or
equal to len, the output field consists of the leftmost w characters from the internal
representation.

If w is not specified, the width of the character field is the length of the
corresponding input/output list item.

| IBM Extension

During formatted stream access, character output is split across more than one
record if it contains newline characters.

| End of IBM Extension |

B (Binary) Editing
Forms:
* Bw
e Bw.m

Input/Output Formatting 191

The B edit descriptor directs editing between values of any type in internal form
and their binary representation. (A binary digit is either 0 or 1.)

On input, w binary digits are edited and form the internal representation for the
value of the input list item. The binary digits in the input field correspond to the
rightmost binary digits of the internal representation of the value assigned to the
input list item. m has no effect on input.

On input, w must be greater than zero.

| Fortran 95 |

On output, w can be zero. If w is zero, the output field consists of the least number
of characters required to represent the output value.

| End of Fortran 95 |

The output field for Bw consists of zero or more leading blanks followed by the
internal value in a form identical to the binary digits without leading zeros. Note
that a binary constant always consists of at least one digit.

The output field for Bw.m is the same as for Bw, except that the digit string
consists of at least m digits. If necessary, the digit string is padded with leading
zeros. The value of m must not exceed the value of w unless w is zero. If m is zero
and the value of the internal data is zero, the output field consists of only blank
characters, regardless of the sign control in effect.

If m is zero, w is positive and the value of the internal datum is zero, the output
field consists of w blank characters. If both w and m are zero, and the
value of the internal datum is zero, the output field consists of only one blank

character.

If the nooldboz suboption of the -qx1f77 compiler option is specified (the default),
asterisks are printed when the output field width is not sufficient to contain the
entire output. On input, the BN and BZ edit descriptors affect the B edit
descriptor.

| IBM Extension |

If the oldboz suboption of the -qx1f77 compiler option is specified, the following

occurs on output:

* Bw is treated as Bw.m, with m assuming the value that is the minimum of w and
the number of digits required to represent the maximum possible value of the
data item.

* The output consists of blanks followed by at least m digits. These are the
rightmost digits of the number, zero-filled if necessary, until there are m digits. If
the number is too large to fit into the output field, only the rightmost m digits
are output.

If w is zero, the oldboz suboption will be ignored.

With the oldboz suboption, the BN and BZ edit descriptors do not affect the B edit
descriptor.

| End of IBM Extension |

192 XL Fortran Advanced Edition for Mac OS X: Language Reference

Examples of B Editing on Input

Input Format Value
111 B3 7
110 B3 6

Examples of B Editing on Output

Value Format Qutput Qutput
(with -gx1f77=01dboz) (with -gx1f77=nooldboz)
7 B3 111 111
6 B5 00110 bb110
17 B6.5 b10001 b10001
17 B4.2 0001 ook kk
22 B6.5 b10110 b10110
22 B4.2 0110 *eokk ok
0 B5.0 bbbbb bbbbb
2 BO 10 10
E, D, and Q (Extended Precision) Editing

Forms:

Ew.d

Ew.d Ee

Dw.d

p i Ewv.d De [an

p—tom] Ewd Qe o 4

b v | Quw.d[Bm A

The E, D, and extended precision Q edit descriptors direct editing between real
and complex numbers in internal form and their character representations with
exponents. An E, D, or extended precision Q edit descriptor can correspond to an
input/output list item of type real, to either part (real or imaginary) of an
input/output list item of type complex, or to any other type in XL Fortran,

as long as the length is at least 4 bytes.

The form of the input field is the same as for E editing. e has no effect on input.

The form of the output field for a scale factor of 0 is:

A\
A

»> ii :‘ |_ _| .—digit_string—decimal_exponent
+ 0

digit_string
is a digit string whose length is the d most significant digits of the value
after rounding.

decimal_exponent
is a decimal exponent of one of the following forms (z is a digit):

Absolute Value of Exponent (with scale
Edit Descriptor factor of 0) Form of Exponent
Ew.d | decimal_exponent | = 99 E+z,7,
Ew.d 99< | decimal_exponent!| = 309 +7.2,Z
Ew.dEe | decimal_exponent | = (10°)-1 E+z,2, ..z,
Ew.dDe * I decimal_exponent| = (10°)-1 * Dxz,z, ..z, *

Input/Output Formatting 193

Absolute Value of Exponent (with scale
Edit Descriptor factor of 0) Form of Exponent
Ew.dQe * I decimal_exponent| = (10°)-1 * Q+2,2, ..z, *
Dw.d I decimal_exponent| = 99 D+z,z,
Dw.d 99< I decimal_exponent| = 309 +7,2,Z4
Quw.d * | decimal_exponent!| =99 * Q+z,7, *
Qu.d * 99< | decimal_exponent| = 309 * +7,2,Z5 ¥

Note: * IBM Extensions

The fcale factor|k (see [“P (Scale Factor) Editing” on page 209) controls decimal
normalization. If -d<k=0, the output field contains k| leading zeros and d - |kl
significant digits after the decimal point. If 0<k<d+2, the output field contains k
significant digits to the left of the decimal point and d-k+1 significant digits to the
right of the decimal point. You cannot use other values of k.

See the general information about numeric editing on page for additional
information.

| IBM Extension

Note: If the value to be displayed using the real edit descriptor is outside of the
range of representable numbers, XL Fortran supports the ANSI/IEEE
floating-point format by displaying the following:

Table 12. Floating-Point Display

Display Meaning

NAN Positive Quiet NaN (not-a-number)
+NAN

-NAN Negative Quiet NaN

NAN Positive Signaling NaN

+NAN

-NAN Negative Signaling NaN

INF Positive Infinity

+INF

-INF Negative Infinity

| End of IBM Extension

Examples of E, D, and Extended Precision Q Editing on Input

(Assume BN editing is in effect for blank interpretation.)

Input Format Value
12.34 E8.4 12.34

.1234E2 E8.4 12.34
2.E10 E12.6E1 2.E10

Examples of E, D, and Extended Precision Q Editing on Output

Value Format Qutput Qutput

(with -gx1f77=noleadzero) (with -gx1f77=1eadzero)
1234.56 £10.3 bb.123E+04 b0.123E+04
1234.56 D10.3 bb.123D+04 b0.123D+04

194 XL Fortran Advanced Edition for Mac OS X: Language Reference

Fortran 95

(with -gx1f90=signedzero) (with -gx1f90=nosignedzero)
-0.001 E5.2 -0.00 b0.00

| End of Fortran 95 |

EN Editing
Forms:
* ENw.d
* ENw.dEe

The EN edit descriptor produces an output field in the form of a real number in
engineering notation such that the decimal exponent is divisible by 3 and the
absolute value of the significand is greater than or equal to 1 and less than 1000,
except when the output value is zero. The scale factor has no effect on output.

The EN edit descriptor can correspond to an input/output list item of type real, to
either part (real or imaginary) of an input/output list item of type complex,
or to any other type in XL Fortran, as long as the length is at least 4 bytes.

The form and interpretation of the input field is the same as for F editing.

The form of the output field is:

v
A

»>> |_ _| .—digit_string—exp
i: + :‘ yyy

yyy are the 1 to 3 decimal digits representative of the most significant digits of
the value of the datum after rounding (yyy is an integer such that 1 = yyy <
1000 or, if the output value is zero, yyy = 0).

digit_string
are the d next most significant digits of the value of the datum after

rounding.

exp is a decimal exponent, divisible by 3, of one of the following forms (z is a
digit):

Edit Descriptor Absolute Value of Exponent | Form of Exponent

ENw.d lexpl =99 E+z,2,

ENw.d 99 < lexp!| =309 +2,2525

ENw.dEe lexpl =10°-1 E+z, ... z,

For additional information on numeric editing, see [“Editing” on page 189

Input/Output Formatting 195

Examples of EN Editing

Value Format Qutput

3.14159 EN12.5 b3.14159E+00

1.41425D+5 EN15.5E4 141.42500E+0003

3.14159D-12 EN15.5E1 KKK kKKK KK KKK

Fortran 95
(with -gx1f90=signedzero) (with -qx1f90=nosignedzero)

-0.001 EN9.2 -1.00E-03 -1.00E-03

| End of Fortran 95 |
ES Editing

Forms:

 ESw.d

* ESw.dEe

The ES edit descriptor produces an output field in the form of a real number in
scientific notation such that the absolute value of the significand is greater than or
equal to 1 and less than 10, except when the output value is zero. The scale factor
has no effect on output.

The ES edit descriptor can correspond to an input/output list item of type real, to
either part (real or imaginary) of an input/output list item of type complex,
or to any other type in XL Fortran, as long as the length is at least 4 bytes.

The form and interpretation of the input field is the same as for F editing.

The form of the output field is:

[N

v
A

—digit_string—exp
SRR

y is a decimal digit representative of the most significant digit of the value of
the datum after rounding.

digit_string
are the d next most significant digits of the value of the datum after

rounding.
exp is a decimal exponent having one of the following forms (z is a digit):
Edit Descriptor Absolute Value of Exponent | Form of Exponent
ESw.d lexpl =99 E+z,2,
ESw.d 99 < lexp!| =309 +2,75274
ESw.dEe lexpl =10°-1 E+z, ... z,

For additional information on numeric editing, see [“Editing” on page 189

196 XL Fortran Advanced Edition for Mac OS X: Language Reference

Examples of ES Editing

Value Format Qutput

31415.9 ES12.5 b3.14159E+04
14142.5D+3 ES15.5E4 bb1.41425E+0007
31415.9D-22 ES15.5E1 HRFEFHRFERFAK AR

Fortran 95

(with -gx1f90=signedzero) (with -gx1f90=nosignedzero)
-0.001 £S9.2 -1.00E-03 -1.00E-03

| End of Fortran 95 |

F (Real without Exponent) Editing

Form:
Fw.d

The F edit descriptor directs editing between real and complex numbers in internal
form and their character representations without exponents.

The F edit descriptor can correspond to an input/output list item of type real, to
either part (real or imaginary) of an input/output list item of type complex,
or to any other type in XL Fortran, as long as the length is at least 4 bytes.

The input field for the F edit descriptor consists of, in order:
1. An optional sign.

2. A string of digits optionally containing a decimal point. If the decimal point is
present, it overrides the d specified in the edit descriptor. If the decimal point is
omitted, the rightmost 4 digits of the string are interpreted as following the
decimal point, and leading blanks are converted to zeros if necessary.

3. Optionally, an exponent, having one of the following forms:
* A signed digit string
* E, D, or Q followed by zero or more blanks and by an optionally signed
digit string. E, D, and Q are processed identically.

The output field for the F edit descriptor consists of, in order:
1. Blanks, if necessary.

2. A minus sign if the internal value is negative, or an optional plus sign if the
internal value is zero or positive.

3. A string of digits that contains a decimal point and represents the magnitude of
the internal value, as modified by the scale factor in effect and rounded to d
fractional digits. See I"P (Scale Factor) Editing” on page 209| for more
information.

See [“Editing” on page 189|for additional information.

On input, w must be greater than zero.

| Fortran 95 |

In Fortran 95 on output, w can be zero. If w is zero, the output field consists of the

Input/Output Formatting 197

least number of characters required to represent the output value.

| End of Fortran 95

Examples of F Editing on Input
(Assume BN editing is in effect for blank interpretation.)

Input Format Value
-100 F6.2 -1.0
2.9 F6.2 2.9

4 E+2 F6.2 400.0

Examples of F Editing on Output

Value Format Qutput Qutput
(with -gx1f77=noleadzero) (with -gx1f77=1eadzero)
+1.2 F8.4 bb1.2000 bb1.2000
.12345 F8.3 bbbb.123 bbbb0.123
-12.34 F6.2 -12.34 -12.34
Fortran 95
-12.34 FO.2 -12.34 -12.34

(with -gx1f90=signedzero) (with -gx1f90=nosignedzero)
-0.001 F5.2 -0.00 b0.00

| End of Fortran 95

G (General) Editing

Forms:
Guw.d
Guw.dEe

Guw.dDe
Guw.dQe

The G edit descriptor can correspond to an input/output list item of any type.
Editing of integer data follows the rules of the I edit descriptor; editing of real and
complex data follows the rules of the E or F edit descriptors (depending on the
magnitude of the value); editing of logical data follows the rules of the L edit
descriptor; and editing of character data follows the rules of the A edit descriptor.

Generalized Real and Complex Editing

If the nogedit77 suboption (the default) of the -qx1f77 option is specified, the
method of representation in the output field depends on the magnitude of the
datum being edited. Let N be the magnitude of the internal datum. If

0 < N < 0.1-0.5x10 """ or N = 10 9-0.5 or N is 0 and d is 0, Gw.d output editing
is the same as kPE w.d output editing and Gw.dEe output editing is the same as
kPEw.dEe output editing, where kP refers to the scale factor (|”P (Scale Factor)|
[Editing” on page 209) currently in effect. If 0.1-0.5x10™4"" =N < 109-0.5 or N is
identically 0 and d is not zero, the scale factor has no effect, and the value of N
determines the editing as follows:

Magnitude of Datum Equivalent Conversion
N=0 F(w-n).(d-1),n('b’)

(d must not be 0)
0.1-0.5x1074* = N < 1-0.5x107¢ F(w-n).dn(’b’)
1-0.5x107% = N < 10-0.5x1079+! F(w-n).(d-1)n('b’)

198 XL Fortran Advanced Edition for Mac OS X: Language Reference

Magnitude of Datum

Equivalent Conversion

10-0.5x1079*! = N < 100-0.5x10"9+2

Fw—n).(d-2),n('b’)

1092-0.5x1072 = N < 1097'-0.5x107!

IA

F(w-n).1,n('b")

109'-0.5x10~" = N < 109-0.5

F(w-n).0,n('b")

where b is a blank. n is 4 for Gw.d and e+2 for Gw.dEe. The value of w-n must also

be positive.

Note that the scale factor has no effect unless the magnitude of the datum to be

edited is outside the range that permits effective use of F editing.

| IBM Extension

If0 < N < 0.1-05x10"%"", N = 10°-0.5, or N is 0 and d is 0, Gw.dDe output

editing is the same as kPEw.dDe output editing and Gw.dQe output editing is the

same as kPEw.dQe output editing.

| End of IBM Extension

On output, if the gedit77 suboption of the -qx1f77 compiler option is specified, the

number is converted using either E or F editing, depending on the number. The

field is padded with blanks on the right as necessary. Letting N be the magnitude

of the number, editing is as follows:
* If N<0.1 or N=10":

- Guw.d editing is the same as Ew.d editing
- Guw.dEe editing is the same as Ew.dEe editing.

e If N20.1 and N<10%:

Magnitude of Datum

Equivalent Conversion

01 =N<1
1=N<10

N < 104!
N < 104

10“‘:2
109!

IA 1A

F(w-n).d, n('b’)
F(w-n).(d-1), n('t’)

F(w.-n).l, n(’b’)
F(w-n).0, n('b’)

Note: While FORTRAN 77 does not address how rounding of values affects the
output field form, Fortran 90 does. Therefore, using -qx1f77=gedit77 may

produce a different output form than -qx1f77=nogedit77 for certain
combinations of values and G edit descriptors.

See [“Editing” on page 189|for additional information.

Examples of G Editing on Output

Value Format Qutput

(with -qx1f77=gedit77)
0.0 G10.2 bb0.00E+00
0.0995 G10.2 bb0.10E+00
99.5 G10.2 bb100.

Qutput
(with -gx1f77=nogedit77)
bbb0.0
bb0.10
bb0.10E+03

Input/Output Formatting

199

| (Integer) Editing
Forms:

Tw
Tw.m

The I edit descriptor directs editing between integers in internal form and
character representations of integers. The corresponding input/output list item can

be of type integer or any other type in XL Fortran.

w includes the optional sign.

m must have a value that is less than or equal to w, unless w is zero in

Fortran 95.

The input field for the I edit descriptor must be an optionally signed digit string,
unless it is all blanks. If it is all blanks, the input field is considered to be zeros.

m is useful on output only. It has no effect on input.

On input, w must be greater than zero.

| Fortran 95 |

On output, w can be zero. If w is zero, the output field consists of the least number
of characters required to represent the output value.

| End of Fortran 95 |

The output field for the I edit descriptor consists of, in order:

1. Zero or more leading blanks

2. A minus sign, if the internal value is negative, or an optional plus sign, if the
internal value is zero or positive

3. The magnitude in the form of:
* A digit string without leading zeros if m is not specified

* A digit string of at least m digits if m is specified and, if necessary, with
leading zeros. If the internal value and m are both zero, blanks are written.

For additional information about numeric editing, see

If m is zero, w is positive and the value of the internal datum is zero, the output
field consists of w blank characters. If both w and m are zero and the value of the
internal datum is zero, the output field consists of only one blank character.

Examples of | Editing on Input
(Assume BN editing is in effect for blank interpretation.)

Input Format Value
-123 16 -123
123456 17.5 123456
1234 14 1234

Examples of | Editing on Output

Value Format Qutput
-12 17.6 -000012
12345 I5 12345

200 XL Fortran Advanced Edition for Mac OS X: Language Reference

Fortran 95

0 16.0 bbbbbb
0 10.0 b
2 10 2

| End of Fortran 95

L (Logical) Editing
Form:
Lw

The L edit descriptor directs editing between logical values in internal form and
their character representations. The L edit descriptor can correspond to an
input/output list item of type logical, or any other type in XL Fortran.

The input field consists of optional blanks, followed by an optional decimal point,
followed by a T for true or an F for false. w includes blanks. Any characters
following the T or F are accepted on input but are ignored; therefore, the strings
.TRUE. and .FALSE. are acceptable input forms.

The output field consists of T or F preceded by (w - 1) blanks.

Examples of L Editing on Input

Input Format Value
T L4 true
.FALSE. L7 false

Examples of L Editing on Output

Value Format Qutput
TRUE L4 bbbT
FALSE L1 F

O (Octal) Editing
Forms:
* Ow
e Ow.m

The O edit descriptor directs editing between values of any type in internal form
and their octal representation. (An octal digit is one of 0-7.)

w includes blanks.

On input, w octal digits are edited and form the internal representation for the
value of the input list item. The octal digits in the input field correspond to the
rightmost octal digits of the internal representation of the value assigned to the

input list item. m has no effect on input.

On input, w must be greater than zero.

| Fortran 95 |

On output, w can be zero. If w is zero, the output field consists of the least number

Input/Output Formatting 201

of characters required to represent the output value.

| End of Fortran 95

The output field for Ow consists of zero or more leading blanks followed by the
internal value in a form identical to the octal digits without leading zeros. Note
that an octal constant always consists of at least one digit.

The output field for Ow.m is the same as for Ow, except that the digit string
consists of at least m digits. If necessary, the digit string is padded with leading
zeros. The value of m must not exceed the value of w, unless w is zero. If m is zero
and the value of the internal datum is zero, the output field consists of only blank
characters, regardless of the sign control in effect.

If the nooldboz suboption of the -qx1f77 compiler option is specified (the default),
asterisks are printed when the output field width is not sufficient to contain the
entire output. On input, the BN and BZ edit descriptors affect the O edit
descriptor.

| IBM Extension

If the oldboz suboption of the -qx1f77 compiler option is specified, the following

occurs on output:

e Ow is treated as Ow.m, with m assuming the value that is the minimum of w
and the number of digits required to represent the maximum possible value of
the data item.

* The output consists of blanks followed by at least m digits. These are the
rightmost digits of the number, zero-filled if necessary, until there are m digits. If
the number is too large to fit into the output field, only the rightmost m digits
are output.

If w is zero, the oldboz suboption will be ignored.

With the oldboz suboption, the BN and BZ edit descriptors do not affect the O
edit descriptor.

| End of IBM Extension

If m is zero, w is positive and the value of the internal datum is zero, the output
field consists of w blank characters. If both w and m are zero and the value of the
internal datum is zero, the output field consists of only one blank character.

Examples of O Editing on Input

Input Format Value
123 03 83
120 03 80

Examples of O Editing on Output

Value Format Qutput Qutput
(with -gx1f77=01dboz) (with -gx1f77=nooldboz)

80 05 00120 bb120

83 02 23 *%

Fortran 95

0 05.0 bbbbb bbbbb

0 00.0 b b

80 00 120 120

202 XL Fortran Advanced Edition for Mac OS X: Language Reference

| End of Fortran 95

Q (Character Count) Editing

| IBM Extension

Form:

*Q

The character count Q edit descriptor returns the number of characters remaining
in an input record. The result can be used to control the rest of the input.

There also exists the extended precision Q edit descriptor. By default, XL Fortran
only recognizes the extended precision Q edit descriptor described earlier. See
ID, and Q (Extended Precision) Editing” on page 193 for more information. To

enable both Q edit descriptors, you must specify the -qqcount compiler option. See
in the for more information.

When you specify the -qqcount compiler option, the compiler will distinguish
between the two Q edit descriptors by the way the Q edit descriptor is used. If
only a solitary Q is found, the compiler will interpret it as the character count Q
edit descriptor. If Qw. or Qu.d is encountered, XL Fortran will interpret it as the
extended precision Q edit descriptor. You should use correct format specifications
with the proper separators to ensure that XL Fortran correctly interprets which Q
edit descriptor you specified.

The value returned as a result of the character count Q edit descriptor depends on
the length of the input record and on the current character position in that record.
The value is returned into a scalar integer variable on the READ statement whose
position corresponds to the position of the character count Q edit descriptor in the
FORMAT statement.

The character count Q edit descriptor can read records of the following file types

and access modes:

¢ Formatted sequential external files. A record of this file type is terminated by a
new-line character. Records in the same file have different lengths.

* Formatted sequential internal nonarray files. The record length is the length of
the scalar character variable.

* Formatted sequential internal array files. The record length is the length of an
element in the character array.

* Formatted direct external files. The record length is the length specified by the
RECL= specifier in the OPEN statement.

* Formatted stream external files. A record of this file type is terminated by a
new-line character. Records in the same file have different lengths.

In an output operation, the character count Q edit descriptor is ignored. The
corresponding output item is skipped.

Examples of Character Count Q Editing on Input

@PROCESS QCOUNT
CHARACTER(50) BUF
INTEGER(4) NBYTES
CHARACTER(60) STRING

BUF = 'This string is 29 bytes long.'

Input/Output Formatting 203

IBM Extension

READ(BUF, FMT='(Q)') NBYTES
WRITE(#*,*) NBYTES

I NBYTES equals 50 because the buffer BUF is 50 bytes long.
READ(*,20) NBYTES, STRING

20 FORMAT (Q,A)

I NBYTES will equal the number of characters entered by the user.
END

| End of IBM Extension

Z (Hexadecimal) Editing
Forms:
e Zw
e Zw.m

The Z edit descriptor directs editing between values of any type in internal form
and their hexadecimal representation. (A hexadecimal digit is one of 0-9, A-F, or
a-f.)

On input, w hexadecimal digits are edited and form the internal representation for
the value of the input list item. The hexadecimal digits in the input field
correspond to the rightmost hexadecimal digits of the internal representation of the
value assigned to the input list item. m has no effect on input.

| Fortran 95 |

On output, w can be zero. If w is zero, the output field consists of the least number
of characters required to represent the output value.

| End of Fortran 95 |

The output field for Zw consists of zero or more leading blanks followed by the
internal value in a form identical to the hexadecimal digits without leading zeros.
Note that a hexadecimal constant always consists of at least one digit.

The output field for Zw.m is the same as for Zw, except that the digit string
consists of at least m digits. If necessary, the digit string is padded with leading
zeros. The value of m must not exceed the value of w, unless w is zero.
If m is zero and the value of the internal datum is zero, the output field
consists of only blank characters, regardless of the sign control in effect.

If m is zero, w is positive and the value of the internal datum is zero, the output
field consists of w blank characters.

| Fortran 95 |

If both w and m are zero and the value of the internal datum is zero, the output
field consists of only one blank character.

| End of Fortran 95 |

If the nooldboz suboption of the -qx1f77 compiler option is specified (the default),
asterisks are printed when the output field width is not sufficient to contain the
entire output. On input, the BN and BZ edit descriptors affect the Z edit

204 XL Fortran Advanced Edition for Mac OS X: Language Reference

descriptor.

| IBM Extension |

If the oldboz suboption of the -qx1f77 compiler option is specified, the following

occurs on output:

* Zuw is treated as Zw.m, with m assuming the value that is the minimum of w and
the number of digits required to represent the maximum possible value of the
data item.

* The output consists of blanks followed by at least m digits. These are the
rightmost digits of the number, zero-filled if necessary, until there are m digits. If
the number is too large to fit into the output field, only the rightmost m digits
are output.

If w is zero, the oldboz suboption will be ignored.

With the oldboz suboption, the BN and BZ edit descriptors do not affect the Z edit
descriptor.

| End of IBM Extension |

Examples of Z Editing on Input

Input Format Value
0c 72 12
7FFF 4 32767

Examples of Z Editing on Output

Value Format Output Qutput
(with -gx1f77=01dboz) (with -gx1f77=nooldboz)

-1 72 FF *%

12 74 000C bbbC

Fortran 95

12 Z0 C C

0 Z5.0 bbbbb bbbbb

0 20.0 b b

| End of Fortran 95

Control Edit Descriptors

/ (Slash) Editing
Forms:
./
. v/

The slash edit descriptor indicates the end of data transfer on the current record.
The repeat specifier (r) has a default value of 1.

When you connect a file for input using sequential access, each slash edit
descriptor positions the file at the beginning of the next record.

When you connect a file for output using sequential access, each slash edit
descriptor creates a new record and positions the file to write at the start of the
new record.

Input/Output Formatting 205

When you connect a file for input or output using direct access, each slash edit
descriptor increases the record number by one, and positions the file at the
beginning of the record that has that record number.

| IBM Extension

When you connect a file for input using stream access, each slash edit descriptor
positions the file at the beginning of the next record, skipping the remaining
portion of the current record. On output to a file connected for stream access, a
newly created empty record follows the current record. The new record becomes
both the current and last record of the file, with the file position coming at the
beginning of the new record.

| End of IBM Extension

Examples of Slash Editing on Input

500 FORMAT(F6.2 / 2F6.2)
160 FORMAT(3/)

: (Colon) Editing

Form:

The colon edit descriptor terminates format control if no more items are in the
input/output list. If more items are in the input/output list when the colon is
encountered, it is ignored. See [“Interaction between Input/Output Lists and|
[Format Specifications” on page 211| for more information.

Example of Colon Editing
10 FORMAT (3(:'Array Value',F10.5)/)

$ (Dollar) Editing

| IBM Extension

Form:

$

The dollar edit descriptor inhibits an end-of-record for a sequential or formatted
stream WRITE statement. Usually, when the end of a format specification is
reached, data transmission of the current record ceases and the file is positioned so
that the next input/output operation processes a new record. But, if a dollar sign
occurs in the format specification, the automatic end-of-record action is suppressed.
Subsequent input/output statements can continue writing to the same record.

Example of Dollar Editing
A common use for dollar sign editing is to prompt for a response and read the
answer from the same line.
WRITE(*,FMT="($,A)"') 'Enter your age '
READ(*,FMT="(BN,I3) ") IAGE
WRITE (*, FMT=1000)
1000 FORMAT('Enter your height: ',$)
READ (,FMT="(F6.2) ' JHEIGHT

End of IBM Extension

206 XL Fortran Advanced Edition for Mac OS X: Language Reference

Apostrophe/Double Quotation Mark Editing (Character-String
Edit Descriptor)

Forms:
* 'character string'
* "character string"

The apostrophe/double quotation mark edit descriptor specifies a character literal
constant in an output format specification. The width of the output field is the
length of the character literal constant. See [“Character” on page 29| for additional
information on character literal constants.

| IBM Extension |
Notes:

1. A backslash is recognized, by default, as an escape sequence, and as a
backslash character when the -qnoescape compiler option is specified. See
lescape sequences| for more information.

2. XL Fortran provides support for multibyte characters within character
constants, Hollerith constants, character-string edit descriptors, and comments.
This support is provided through the -qmbcs option. Assignment of a constant
containing multibyte characters to a variable that is not large enough to hold
the entire string may result in truncation within a multibyte character.

3. Support is also provided for Unicode characters and filenames. If the
environment variable LANG is set to UNIVERSAL and the -qmbcs compiler
option is specified, the compiler can read and write Unicode characters and
filenames.

| End of IBM Extension |

Examples of Apostrophe/Double Quotation Mark Editing

ITIME=8
WRITE(*,5) ITIME
5 FORMAT('The value is -- ',I2) ! The value is -- 8

WRITE (*,10) ITIME

10 FORMAT(I2,'0''clock') ! 8o'clock
WRITE (%, ' (I12,7Ho" 'clock) ') ITIME ! 8o'clock
WRITE (*,15) ITIME

15 FORMAT("The value is -- ",I2) ! The value is -- 8
WRITE (*,20) ITIME

20 FORMAT(I2,"0'clock") ! 8o'clock
WRITE (%, ' (I2,"0" 'clock")") ITIME ! 80'clock

BN (Blank Null) and BZ (Blank Zero) Editing

Forms:
BN
BZ

The BN and BZ edit descriptors control the interpretation of nonleading blanks by
subsequently processed I, F, E, EN, ES, D, G, B, O, Z, and extended precision Q
edit descriptors. BN and BZ have effect only on input.

BN specifies that blanks in numeric input fields are to be ignored, and remaining

characters are to be interpreted as though they were right-justified. A field of all
blanks has a value of zero.

Input/Output Formatting 207

BZ specifies that nonleading blanks in numeric input fields are to be interpreted as
Zeros.

The initial setting for blank interpretation is determined by the BLANK= specifier
of the OPEN statement. (See[“OPEN” on page 332.) The initial setting is
determined as follows:

* If BLANKS= is not specified, blank interpretation is the same as if BN editing
were specified.

» If BLANKS= is specified, blank interpretation is the same as if BN editing were
specified when the specifier value is NULL, or the same as if BZ editing were
specified when the specifier value is ZERO.

The initial setting for blank interpretation takes effect at the start of a formatted
READ statement and stays in effect until a BN or BZ edit descriptor is
encountered or until format control finishes. Whenever a BN or BZ edit descriptor
is encountered, the new setting stays in effect until another BN or BZ edit
descriptor is encountered, or until format control terminates.

| IBM Extension |

If you specify the oldboz suboption of the —qx1f77 compiler option, the BN and BZ
edit descriptors do not affect data input edited with the B, O, or Z edit descriptors.
Blanks are interpreted as zeros.

| End of IBM Extension |

H Editing
Form:
nH str

The H edit descriptor specifies a character string (str) and its length (1) in an
output format specification. The string can consist of any of the characters allowed
in a character literal constant.

If an H edit descriptor occurs within a character literal constant, the constant
delimiter character (for example, apostrophe) can be represented within str if two
such characters are consecutive. Otherwise, another delimiter must be used.

The H edit descriptor must not be used on input.

Notes:

| IBM Extension |

1. A backslash is recognized,as an escape character by default, and as a backslash
character when the -qnoescape compiler option is specified. See page @I for
more information on escape sequences.

2. XL Fortran provides support for multibyte characters within character
constants, Hollerith constants, character-string edit descriptors, and comments.
This support is provided through the -qmbcs option. Assignment of a constant
containing multibyte characters to a variable that is not large enough to hold
the entire string may result in truncation within a multibyte character.

3. Support is also provided for Unicode characters and filenames. If the
environment variable LANG is set to UNIVERSAL and the -qmbcs compiler
option is specified, the compiler can read and write Unicode characters and

208 XL Fortran Advanced Edition for Mac OS X: Language Reference

filenames.

| End of IBM Extension

| Fortran 95

4. Fortran 95 does not include the H edit descriptor, although it was part of both
FORTRAN 77 and Fortran 90. See page [‘Deleted Features” on page 606| for
more information.

| End of Fortran 95

Examples of H Editing

50 FORMAT (16HThe value is -- ,12)
10 FORMAT (I2,7Ho"'clock)
WRITE(*,' (I2,7Ho" 'clock) ') ITIME

P (Scale Factor) Editing

Form:
kP

The scale factor, k, applies to all subsequently processed F, E, EN, ES, D, G, and
extended precision Q edit descriptors until another scale factor is encountered or
until format control terminates. The value of k is zero at the beginning of each
input/output statement. It is an optionally signed integer value representing a
power of ten.

On input, when an input field using an F, E, EN, ES, D, G, or extended precision
Q edit descriptor contains an exponent, the scale factor is ignored. Otherwise, the
internal value equals the external value multiplied by 109.

On output:

* In F editing, the external value equals the internal value multiplied by 10*.

* In E, D, and extended precision Q editing, the external decimal field is
multiplied by 10*. The exponent is then reduced by k.

* In G editing, fields are not affected by the scale factor unless they are outside
the range that can use F editing. If the use of E editing is required, the scale
factor has the same effect as with E output editing.

e In EN and ES editing, the scale factor has no effect.

Examples of P Editing on Input

Input Format Value
98.765 3P,F8.6 .98765E-1
98.765 -3P,F8.6 98765.

.98765E+2 3P,F10.5 .98765E+2

Examples of P Editing on Output

Value Format Qutput Qutput
(with -gx1f77=noleadzero) (with -gx1f77=1eadzero)
5.67 -3P,F7.2 bbbb.01 bbb0.01
12.34 -2P,F6.4 b.1234 0.1234
12.34 2P,E10.3 b12.34E+00 b12.34E+00
S, SP, and SS (Sign Control) Editing

Forms:

S

SP

Input/Output Formatting 209

SS

The S, SP, and SS edit descriptors control the output of plus signs by all
subsequently processed I, F, E, EN, ES, D, G, and extended precision Q edit
descriptors until another S, SP, or SS edit descriptor is encountered or until format
control terminates.

S and SS specify that plus signs are not to be written. (They produce identical
results.) SP specifies that plus signs are to be written.

Examples of S, SS, and SP Editing on Output

Value Format Qutput

12.3456 S,F8.4 b12.3456
12.3456 SS,F8.4 b12.3456
12.3456 SP,F8.4 +12.3456

T, TL, TR, and X (Positional) Editing

Forms:
Tc
TLc
TRc
oX

The T, TL, TR, and X edit descriptors specify the position where the transfer of the
next character to or from a record starts. The T and TL edit descriptors use the left
tab limit for file positioning. Immediately before data transfer the definition of the
left tab limit is the character position of the current record or the current position
of the stream file. The T, TL, TR, and X specify the character position as follows:

* For Tc, the cth character position of the record, relative to the left tab limit.

* For TLc, ¢ characters backward from the current position unless c is greater than
the difference between the current character position and the left tab limit. Then,
transmission of the next character to or from the record occurs at the left tab
limit.

* For TRc, c characters forward from the current position.

* For 0X, o characters forward from the current position.
The TR and X edit descriptors give identical results.

On input, a TR or X edit descriptor can specify a position beyond the last
character of the record if no characters are transferred from that position.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to
be transferred. If characters are transferred to positions at or after the position
specified by the edit descriptor, positions skipped and previously unfilled are filled
with blanks. The result is the same as if the entire record were initially filled with
blanks.

On output, a T, TL, TR, or X edit descriptor can result in repositioning so that
subsequent editing with other edit descriptors causes character replacement.

| IBM Extension |

The X edit descriptor can be specified without a character position. It is treated as
1X. When the source file is compiled with -qlanglvl=90std or -qlanglvl=95std, this

210 XL Fortran Advanced Edition for Mac OS X: Language Reference

extension is disabled in all compile-time format specifications, and the form of 0X
is enforced. To disable this extension in run-time formats, the following run-time
option must be set:

XLFRTEOPTS="Tang1v1=90std" or "langlv1=95std" ; export XLFRTEOPTS

| End of IBM Extension

Examples of T, TL, and X Editing on Input

150 FORMAT(I4,T30,14)
200 FORMAT(F6.2,5X,5(14,TL4))

Examples of T, TL, TR, and X Editing on Output

50 FORMAT('Column 1',5X,'Column 14',TR2,'Column 25')
100 FORMAT('aaaaa',TL2, 'bbbbb',5X,'ccccc',T10, 'ddddd")

Interaction between Input/Output Lists and Format Specifications

The beginning of format-directed formatting initiates format control. Each action of
format control depends on the next edit descriptor contained in the format
specification and on the next item in the input/output list, if one exists.

If an input/output list specifies at least one item, at least one data edit descriptor
must exist in the format specification. Note that an empty format specification
(parentheses only) can be used only if there are no items in the input/output list
or if each item is a zero-sized array. If this is the case and advancing input/output
is in effect, one input record is skipped, or one output record containing no
characters is written. For nonadvancing input/output, the file position is left
unchanged.

A format specification is interpreted from left to right, except when a repeat
specification (r) is present. A format item that is preceded by a repeat specification
is processed as a list of r format specifications or edit descriptors identical to the
format specification or edit descriptor without the repeat specification.

One item specified by the input/output list corresponds to each data edit
descriptor. A list item of type complex requires the interpretation of two F, E, EN,
ES, D, G, or extended precision Q edit descriptors. No item specified by the
input/output list corresponds to a control edit descriptor or character string edit
descriptor. Format control communicates information directly with the record.

Format control operates as follows:

1. If a data edit descriptor is encountered, format control processes an
input/output list item, if there is one, or terminates the input/output command
if the list is empty. If the list item processed is of type complex, any two edit
descriptors are processed.

2. The colon edit descriptor terminates format control if no more items are in the
input/output list. If more items are in the input/output list when the colon is
encountered, it is ignored.

3. If the end of the format specification is reached, format control terminates if the
entire input/output list has been processed, or control reverts to the beginning
of the format item terminated by the last preceding right parenthesis. The
following items apply when the latter occurs:

* The reused portion of the format specification must contain at least one data
edit descriptor.

Input/Output Formatting 211

* If reversion is to a parenthesis that is preceded by a repeat specification, the
repeat specification is reused.

* Reversion, of itself, has no effect on the scale factor, on the S, SP, or SS edit
descriptors, or on the BN or BZ edit descriptors.

* If format control reverts, the file is positioned in a manner identical to the
way it is positioned when a slash edit descriptor is processed.

| IBM Extension

During a read operation, any unprocessed characters of the record are skipped
whenever the next record is read. A comma can be used as a value separator for
noncharacter data in an input record processed under format-directed formatting.
The comma will override the format width specifications when the comma appears
before the end of the field width. For example, the format (110,F20.10,14) will
read the following record correctly:

-345, .05E-3, 12

| End of IBM Extension

It is important to consider the maximum size record allowed on the input/output
medium when defining a Fortran record by a [FORMAT statement} For example, if
a Fortran record is to be printed, the record should not be longer than the printer’s
line length.

List-Directed Formatting

In list-directed formatting, editing is controlled by the types and lengths of the
data being read or written. An asterisk format identifier specifies list-directed
formatting. For example:

REAL TOTAL1, TOTAL2
PRINT =, TOTAL1, TOTALZ

List-directed formatting can only be used with sequential and stream access.

The characters in a formatted record processed under list-directed formatting
constitute a sequence of values separated by value separators:

¢ A value has the form of a constant or null value.

* A value separator is a comma, slash, or set of contiguous blanks. A comma or
slash can be preceded and followed by one or more blanks.

List-Directed Input

Input list items in a list-directed READ statement are defined by corresponding
values in records. The form of each input value must be acceptable for the type of
the input list item. An input value has one of the following forms:

c is a literal constant of intrinsic type or a non-delimited character constant. 7 is an
unsigned, nonzero, integer literal constant. A kind type parameter must not be
specified for either r or c. The constant c is interpreted as though it had the same
kind type parameter as the corresponding list item.

212 XL Fortran Advanced Edition for Mac OS X: Language Reference

The r * ¢ form is equivalent to r successive appearances of the constant. The r *
form is equivalent to r successive appearances of the null value.

A null value is represented by one of the following:
* Two successive commas, with zero or more intervening blanks
* A comma followed by a slash, with zero or more intervening blanks

* An initial comma in the record, preceded by zero or more blanks

| IBM Extension

Use the -qintlog compiler option to specify integer or logical values for input items
of either integer or logical type.

| End of IBM Extension |

A character value can be continued in as many records as required. If the next
effective item is of type character and the following are true:

1. The character constant does not contain the value separators blank, comma, or
slash, and

The character constant does not cross a record boundary, and

The first nonblank character is not a quotation mark or apostrophe, and

The leading characters are not numeric followed by an asterisk, and

The character constant contains at least one character,

aprwn

the delimiting apostrophes or quotation marks are not required. If the delimiters

are omitted, the character constant is terminated by the first blank, comma, slash,
or end-of-record, and apostrophes and double quotation marks within the datum
are not to be doubled.

The end of a record:

* Has the same effect as a blank separator, unless the blank is within a character
literal constant or complex literal constant

* Does not cause insertion of a blank or any other character in a character value

* Must not separate two apostrophes representing an apostrophe.

Two or more consecutive blanks are treated as a single blank unless the blanks are
within a character value.

A null value has no effect on the definition status of the corresponding input list
item.

A slash indicates the end of the input list, and list-directed formatting is
terminated. If additional items remain in the input list when a slash is
encountered, it is as if null values had been specified for those items.

If an object of derived type occurs in an input list, it is treated as if all the
structure components were listed in the same order as in the definition of the
derived type. The ultimate components of the derived type must not be pointers or
allocatables.

List-Directed Output

List-directed WRITE| and [PRINT| statements produce values in the order they
appear in an output list. Values are written in a form that is valid for the data type
of each output list item.

Input/Output Formatting 213

Except for complex constants and character constants, the end of a record must not
occur within a constant and blanks must not appear within a constant.

Integer values are written using I editing.

Real values are written using E or F editing. (See [“E, D, and Q (Extended]
IPrecision) Editing”| or [“F (Real without Exponent) Editing”|for more information.)

Complex constants are enclosed in parentheses with a comma separating the real
and imaginary parts, each produced as defined above for real constants. The end
of a record can occur between the comma and the imaginary part only if the entire
constant is as long as (or longer than) an entire record. The only embedded blanks
permitted within a complex constant are one blank between the comma and the
end of a record, and one blank at the beginning of the next record.

Logical values are written as T for the value true and F for the value false.

Character constants produced for an internal file, or for a file opened without a
DELIM-= specifier or with a DELIM= specifier with a value of NONE:

* Are not delimited by apostrophes or quotation marks,
* Are not separated from each other by value separators,

* Have each internal apostrophe or double quotation mark represented externally
by one apostrophe or double quotation mark, and

* Have a blank character inserted by the processor for carriage control at the
beginning of any record that begins with the continuation of a character constant
from the preceding record.

Undelimited character data may not be read back correctly using list-directed
input.

Character constants produced for a file opened with a DELIM= specifier with a
value of QUOTE are delimited by double quotation marks, followed by a value
separator, and have each internal quote represented on the external medium by
two contiguous double quotation marks. Character constants produced for a file
opened with a DELIM= specifier with a value of APOSTROPHE are delimited by
apostrophes, followed by a value separator, and have each internal apostrophe
represented on the external medium by two contiguous apostrophes.

Slashes (as value separators) and null values are not written.

Arrays are written in column-major order.

You can specify a structure in an output list. On list-directed output, a structure is
treated as if all of its components were listed in the same order as they are defined

in the derived-type definition. The ultimate components of the derived type must
not be pointers or allocatables.

| IBM Extension |
The following table shows the width of the written field for any data type and

length. The size of the record will be the sum of the field widths plus a byte to
separate each noncharacter field.

214 XL Fortran Advanced Edition for Mac OS X: Language Reference

Table 13. Width of Written Field

Length | Maximum Field Width Fraction Precision/IEEE
Data Type (bytes) (characters) (decimal digits) | (decimal digits)
integer 1 4 n/a n/a
2 6 n/a n/a
4 11 n/a n/a
8 20 n/a n/a
real 4 17 10 7
8 26 18 15
16 43 35 31
complex 8 37 10 7
16 55 18 15
32 89 35 31
logical 1 1 n/a n/a
2 1 n/a n/a
4 1 n/a n/a
8 1 n/a n/a
character n n n/a n/a

| End of IBM Extension |

Except for continuation of delimited character constants, each output record begins
with a blank character to provide carriage control when the record is printed.

Namelist Formatting

In Fortran 90, namelist formatting can only be used with sequential access.

| IBM Extension |

XL Fortran also allows namelist formatting to be used with internal files and
stream access.

| End of IBM Extension |

Namelist Input Data
The form of input for namelist input is:
1. Optional blanks

2. The ampersand (&) character, followed immediately by the namelist group
name specified in the NAMELIST statement

3. One or more blanks

4. A sequence of zero or more name-value subsequences, separated by value
separators

5. A slash to terminate the namelist input

Blanks at the beginning of an input record that continues a delimited character
constant are considered part of the constant.

| IBM Extension |

If the NAMELIST run-time option has the value OLD, input for a NAMELIST
statement consists of:

Input/Output Formatting 215

1. Optional blanks

2. An ampersand (&) or dollar sign ($), followed immediately by the namelist
group name specified in the NAMELIST statement

3. One or more blanks

4. A sequence of zero or more name-value subsequences separated from each
other by a single comma. A comma may be specified after the last name-value
subsequence.

5. &END or $END to signal the end of the data group

6. The first character of each input record must be blank, including those records
that continue a delimited character constant.

| End of IBM Extension

| Fortran 95
In Fortran 95, comments can be used in namelists.

Depending on whether a value of NEW or OLD is specified for the NAMELIST
runtime option, different rules apply.

If a value of NEW is specified for the NAMELIST runtime option, the rules for
namelist comments are:

* Except within a character literal constant, an exclamation point (!) after a value
separator, except a slash, or in the first nonblank position of a namelist input
record initiates a comment.

* The comment extends to the end of the input record, and can contain any
character in the processor-dependent character set.

e The comment is ignored.

¢ A slash within a namelist comment does not terminate execution of the namelist
input statement.

| End of Fortran 95

| IBM Extension

If a value of OLD is specified for the NAMELIST runtime option, the rules for
namelist comments are:

* Except within a character literal constant, an exclamation point (!) after a single
comma or in the first nonblank position of a namelist input record, but not the
first character of an input record, initiates a comment.

* The comment extends to the end of the input record, and can contain any
character in the processor-dependent character set.

¢ The comment is ignored.

e A &END or $END within a namelist comment does not terminate execution of
the namelist input statement.

| End of IBM Extension

Namelist comments are not allowed in stream input.

216 XL Fortran Advanced Edition for Mac OS X: Language Reference

The form of a name-value subsequence in an input record is:

»>—name— = —constant_list ><

name is a variable

constant
has the following forms:

»—L—_I—Z iteral_constant ><
P—=

r is an unsigned, nonzero, scalar, integer literal constant specifying
the number of times the literal_constant is to occur. r cannot specify
a kind type parameter.

literal_constant
is a scalar literal constant of intrinsic type that cannot specify a
kind type parameter, or it is a null value. The constant is treated as
if it had the same kind type parameter as the corresponding list
item. If literal_constant is of type character, it must be delimited by
apostrophes or quotation marks. If literal_constant is of type logical,
it can be specified as T or F.

Any subscripts, strides, and substring range expressions used to qualify name must
be integer literal constants with no kind type parameter specified.

For information on the type of noncharacter input data, see [‘List-Directed Input’]|

If name is neither an array nor an object of derived type, constant_list must contain
only a single constant.

Variable names specified in the input file must appear in the namelist list, but the
order of the input data is not significant. A name that has been made equivalent to
name cannot be substituted for that name in the namelist list. See ["NAMELIST” on|

for details on what can appear in a namelist list.

You can use one or more optional blanks before or after name, but name must not
contain embedded blanks.

In each name-value subsequence, the name must be the name of a namelist group
item with an optional qualification. The name with the optional qualification must
not be a zero-sized array, zero-sized array section, or zero-length character string.
The optional qualification, if specified, must not contain a vector subscript.

If name is an array or array section without vector subscripts, it is expanded into a
list of all the elements of the array, in the order that they are stored. If name is a
structure, it is expanded into a list of ultimate components of intrinsic type, in the
order specified in the derived-type definition. The ultimate components of the
derived type can not be pointers or allocatables.

Input/Output Formatting 217

If name is an array or structure, the number of constants in constant_list must be
less than or equal to the number of items specified by the expansion of name. If the
number of constants is less than the number of items, the remaining items retain
their former values.

A null value is specified by:

e The r* form

* Blanks between two consecutive value separators following an equal sign

* Zero or more blanks preceding the first value separator and following an equal
sign

* Two consecutive nonblank value separators

A null value has no effect on the definition status of the corresponding input list
item. If the namelist group object list item is defined, it retains its previous value;
if it is undefined, it remains undefined. A null value must not be used as either the
real or imaginary part of a complex constant, but a single null value can represent
an entire complex constant.

The end of a record following a value separator, with or without intervening
blanks, does not specify a null value.

| IBM Extension

When the LANGLVL run-time option is set to EXTENDED, XL Fortran allows
multiple input values to be specified in conjunction with a single array element.
The array element cannot specify subobject designators. When this occurs, the
values are assigned to successive elements of the array, in array element order. For
example, suppose that array A is declared as follows:

INTEGER A(100)

NAMELIST /F00/ A
READ (5, FO0O)

and that the following input appears in unit 5:

&F00
A(3) = 2, 10, 15, 16
/

During execution of the READ statement, the value 2 is assigned to A(3), 10 is
assigned to A(4), 15 is assigned to A(5), and 16 is assigned to A(6).

If multiple values are specified in conjunction with a single array element, any
logical constant must be specified with a leading period (for example, .T).

If the NAMELIST run-time option is specified with the value OLD, the BLANK=
specifier determines how embedded and trailing blanks between noncharacter
constants are treated.

If the -qmixed compiler option is specified, the namelist group name and list item
names are treated in a case-sensitive manner.

| End of IBM Extension

A slash encountered as a value separator during the execution of a namelist input
statement causes termination of execution of that input statement after assignment

218 XL Fortran Advanced Edition for Mac OS X: Language Reference

of the previous value. If there are additional items in the namelist group object
being transferred, the effect is as if null values had been supplied for them.

Example of Namelist Input Data

File NMLEXP contains the following data before the READ statement is executed:

Character position:

File contents:

&NAME1

I=5,
SMITH%P_AGE=40
/

The above file contains four data records. The program contains the following:

TYPE PERSON
INTEGER P_AGE
CHARACTER(20) P_NAME
END TYPE PERSON
TYPE(PERSON) SMITH
NAMELIST /NAME1/ I,J,K,SMITH
I=1
J=2
K=3
SMITH=PERSON(20, 'John Smith')
OPEN(7,FILE="NMLEXP')
READ(7,NML=NAME1)
! Only the value of I and P_AGE in SMITH are
! altered (I = 5, SMITH%P_AGE = 40).
!'"J, K and P_NAME in SMITH remain the same.
END

Note: In the previous example, the data items appear in separate data records. The

following example is a file with the same data items, but they are in one
data record:

Character position:

File contents:
&NAME1 I= 5, SMITH%P_AGE=40 /

| Fortran 95

An example of a NAMELIST comment when NAMELIST=NEW is specified and

the NAMELIST comment appears after the value separator space.

&TODAY 1=12345 ! This is a comment. /
X(1)=12345, X(3:4)=2*1.5, I=6,
P="IISN'T_BOB'S", 7=(123,0)/

| End of Fortran 95

Input/Output Formatting

219

| IBM Extension

An example of a NAMELIST comment when NAMELIST=OLD is specified and
the NAMELIST comment appears after a comma separator.

&TODAY I=12345, I This is a comment.
X(1)=12345, X(3:4)=2*1.5, I=6,
P="1ISN'T BOB'S", Z=(123,0) &END

| End of IBM Extension

Namelist Output Data

When output data is written using a namelist list, it is written in a form that can
be read using a namelist list (except for character data that is not delimited). All
variables specified in the namelist list and their values are written out, each
according to its type. Character data is delimited as specified by the DELIM=
specifier. The fields for the data are made large enough to contain all the
significant digits. (See [Table 13 on page 215|for information on the fields.) The
values of a complete array are written out in column-major order.

| IBM Extension

A WRITE statement with a namelist list produces a minimum of three output
records: one record containing the namelist name, followed by one or more records
containing output data items, and a final record containing the slash (/) end
marker. An internal file meant to receive namelist output must be a character array
containing at least three elements. More than three array elements may be
required, depending on the amount of data transferred in the WRITE statement.
You cannot use one long character variable, even if it is large enough to hold all of
the data. If the length of the array element to hold the data is not sufficient, it will
be necessary to specify an array with more than three array elements.

| End of IBM Extension

If the NAMELIST run-time option is not specified or if NAMELIST=NEW, the
namelist group name and namelist item names are output in uppercase.

| IBM Extension

If NAMELIST=OLD is specified, the namelist group name and namelist item
names are output in lower case. If the -qmixed compiler option is specified, the
name is case sensitive, regardless of the value of the NAMELIST run-time option.

If NAMELIST=0OLD is specified, the end of the output record will be signaled by
&end.

If the NAMELIST run-time option is specified with the value OLD and the
DELIM-= specifier is not specified, character data is delimited by apostrophes.
Non-delimited character strings will be delimited by apostrophes and will be
separated from each other by commas. Also, blanks will not be added to the
beginning of a record that starts with the continuation of a character string from
the previous record.

| End of IBM Extension

220 XL Fortran Advanced Edition for Mac OS X: Language Reference

Character constants produced for a file opened without a DELIM= specifier or
with a DELIM= specifier with a value of NONE:

* Are not delimited by apostrophes or quotation marks,
* Are not separated from each other by value separators,

* Have each internal apostrophe or quotation mark represented externally by one
apostrophe or quotation mark, and

* Have a blank character inserted by the processor for carriage control at the
beginning of any record that begins with the continuation of a character constant
from the preceding record.

Nondelimited character data that has been written out cannot be read as character
data.

| IBM Extension |

For internal files, character constants are written with a value of APOSTROPHE
for the DELIM= specifier.

| End of IBM Extension |

Character constants produced for a file opened with a DELIM= specifier with a
value of QUOTE are delimited by double quotation marks, are preceded and
followed by a value separator, and have each internal quotation mark represented
on the external medium by two contiguous quotation marks.

Character constants produced for a file opened with a DELIM= specifier with a
value of APOSTROPHE are delimited by apostrophes, are preceded and followed
by a value separator, and have each internal apostrophe represented on the
external medium by two contiguous apostrophes.

| IBM Extension |

To restrict namelist output records to a given width, specify the RECL= specifier
(in the OPEN statement) or the NLWIDTH] run-time option. See the
for information on the NLWIDTH]| run-time option.

| End of IBM Extension |

Except for continuation of delimited character constants, each output record begins
with a blank character to provide carriage control when the record is printed.

| IBM Extension |

For external files, by default, all of the output items appear in a single output
record wide enough to contain them. To have the record output on separate lines,
use the RECL= specifier (in the OPEN statement) or the NLWIDTH run-time
option.

| End of IBM Extension |

For information on the type of noncharacter output data, see [“List-Directed

Output” on page 213/

Input/Output Formatting 221

Example of Namelist Output Data

TYPE PERSON
INTEGER P_AGE
CHARACTER(20) P_NAME
END TYPE PERSON
TYPE (PERSON) SMITH
NAMELIST /NL1/ I,J,C,SMITH
CHARACTER(5) :: C='BACON'
INTEGER I,J
1=12046
J=12047
SMITH=PERSON (20, 'John Smith')
WRITE(6,NL1)
END

After execution of the WRITE statement with NAMELIST=NEW, the output data
is:

1 2 3 4
Tooo+o o0+ 00+l 00+l 0
&NL1
1=12046, J=12047, C=BACON, SMITH=20, John Smith

/

| IBM Extension

After execution of the WRITE statement with NAMELIST=OLD, the output data
is:

1 2 3 4
1o+ .00 0400000 0+ .0, ..+l L0
&nll
i=12046, j=12047, c='BACON', smith=20, 'John Smith
&end

End of IBM Extension

222 XL Fortran Advanced Edition for Mac OS X: Language Reference

Statements and Attributes
This section provides an alphabetical reference to all XL Fortran statements. The
section for each statement is organized to help you readily access the syntax and
rules, and points to the structure and uses of the statement in [The XL Fortran|

The following table lists the statements, and shows which ones are executable,
which ones are specification_part statements, and which ones can be used as the
terminal statement of a DO or DO WHILE construct.

Table 14. Statements Table

Executable Specification
Statement Name Statement Statement Terminal Statement

ALLOCATABLE X
ALLOCATE X X
ASSIGN X X
AUTOMATIC| |} X
IBACKSPACE X X
[BLOCK DATA
[BYTH X
[Cad] X X
[cAsH X
[CHARACTER x
[cCosH X X
[covvoN] X
[CoMPLEY X
[CoNTANg
[coNTINUA X X
[Sxeny X
AT X
[DEALLOCATH X X
[Derived Typd
[DIMENSION X
9 X
[DOWHILH X

'%)UBLE COMPLEX| X

X
[PRECTSION
= X

© Copyright IBM Corp. 1990, 2003 223

Table 14. Statements Table (continued)

Executable Specification
Statement Name Statement Statement Terminal Statement

= x

| ELSEWHERE X

[END X

[END BLOCK DATA|

(<09

om

[END FORALL] A

IEND FUNCTION]|

XX XX

[END INTERFACE]| X

[END MAP| X

|END MODULH

[END PROGRAM| X

<

[END SELECT]

[END SUBROUTINE] X

[END STRUCTURE] X
[1]

IEND TYPH X

[END UNio X

|END WHERH X

o] X X

B9 ;

| EQUIVALENCH X

B X

[EXTERNAT x

[EORALL A X X

[FoRMAT x

[FONCTION

[GO TO (Assiened)] X

[GO TO (Computed)] X X

X
(Unconditional

[EEo] X

[F (Arithmetic) X

o=y x x

[MPCic X

o x x

[iizesy

||INTENT|

[NiERrACH

XX XX

[Nixnsd

224 XL Fortran Advanced Edition for Mac OS X: Language Reference

Table 14. Statements Table (continued)

Statement Name

Executable
Statement

Specification
Statement

Terminal Statement

[CoGicAl

X

MAT B

X

[MoDULE

IMODULE
PROCEDURE|

[EAMELET

[y

[y

ormonAl

[PARAMETER]

[Pauss

[[POINTER (Fortran|

|POINTER (integer !]

i

. RINT

[ERIVATH

[PRoGRAM

Fronco |

[PuBLIq

A

=y

[RECoRD)

RETORN]

[REWIND

ELECT CAS

EQUENC

TU’U’;’
=~ =
o] [es
3
(e}
=]
=3
lsw]
c
= sl
.
o
|5 |

<

@)

S5
ElE
[

93]

UBROUTINE

[92)

TRUCTURE

‘ARGE

YPE

l

=

ype Declaration|

o~ B

2

XIX|XIX| X[XXX

Statements and Attributes 225

Table 14. Statements

Table (continued)

Executable Specification
Statement Name Statement Statement Terminal Statement
X
X X
x x

Assignment and pointer assignment statements are discussed in [“Expressions and|

[Assienment” on page 85.|Both statements are executable and can serve as terminal

Each attribute has a corresponding attribute specification statement, and the syntax
diagram provided for the attribute illustrates this form. An entity can also acquire
this attribute from a type declaration statement or, in some cases, through a default
setting. For example, entity A, said to have the PRIVATE attribute, could have
acquired the attribute in any of the following ways:

I Default setting

A I Type declaration statement
I Attribute specification statement

statements.
Attributes
REAL, PRIVATE ::
PRIVATE :: A
MODULE X
PRIVATE
REAL :: A
END MODULE
ALLOCATABLE
Purpose
array.
Syntax
»»>—ALLOCATABLE

226 XL Fortran Advanced Edition for Mac OS X: Language Reference

The ALLOCATABLE attribute declares allocatable objects— that is, objects whose
space is dynamically allocated by execution of an ALLOCATE statement or by a
derived-type assignment statement. If it is an array, it will be a deferred-shape

v

[

B

A\
A

»—Yobject_name

l—(—deferred_shape_spec_l is 1,“—)—|

object_name

deferred_shape_spec

is the name of an allocatable object

is a colon(:), where each colon represents a dimension

ALLOCATABLE

Rules
The object cannot be a pointee. If the object is an array and it is specified
elsewhere in the scoping unit with the DIMENSION attribute, the array
specification must be a deferred_shape_spec.
Table 15. Attributes Compatible with the ALLOCATABLE Attribute
* JAUTOMATIC * [PRIVATE * [STATIC
* IDIMENSIO e [PROTECTED| * [TARGE
* [INTENT e |PUBLIC * [VOLATIL
* OPTIONAL * |SAVE
Examples

REAL, ALLOCATABLE :: A(:,:) ! Two-dimensional array A declared
! but no space yet allocated

READ (5,%) I,J

ALLOCATE (A(I,J))

END

Related Information

« |”Allocatable Arrays” on page 71|

* ["ALLOCATED(ARRAY) or ALLOCATED(SCALAR)” on page 432
* |“ALLOCATE’
+ |'DEALLOCATE” on page 260|
« [“Allocation Status” on page 61

* |“Deferred-Shape Arrays” on page 70|

» [“Allocatable Objects as Dummy Arguments” on page 162|

« [“Allocatable Components” on page 41|

ALLOCATE

Purpose

The ALLOCATE statement dynamically provides storage for pointer targets and
allocatable objects.

Syntax

»>—ALLOCATE—(—allocation list

E———

l—,—STAT— = —stat_variab le—|

stat_variable
is a scalar integer variable

allocation

Statements and Attributes 227

ALLOCATE

Rules

A\
A

»»—allocate_object \\
(

v
|—lower_bound—:—|

upper_bound——)J

allocate_object
is a variable name or structure component. It must be a pointer or an
allocatable object.

lower_bound, upper_bound
are each scalar integer expressions

Execution of an ALLOCATE statement for a pointer causes the pointer to become
associated with the target allocated. For an allocatable object, the object becomes
definable.

The number of dimensions specified (i.e., the number of upper bounds in
allocation) must be equal to the rank of allocate_object. When an ALLOCATE
statement is executed for an array, the values of the bounds are determined at that
time. Subsequent redefinition or undefinition of any entities in the bound
expressions does not affect the array specification. Any lower bound, if omitted, is
assigned a default value of 1. If any lower bound value exceeds the corresponding
upper bound value, that dimension has an extent of 0 and allocate_object is
zero-sized.

Any allocate_object or a specified bound of an allocate_object does not depend on the
value of stat_variable, or on the value, bounds, allocation status, or association
status of any allocate_object in the same ALLOCATE statement.

stat_variable shall not be allocated within the ALLOCATE statement in which it
appears; nor shall it depend on the value, bounds, allocation status, or association
status of any allocate_object in the same ALLOCATE statement.

If the STAT= specifier is not present and an error condition occurs during
execution of the statement, the program terminates. If the STAT= specifier is
present, the stat_variable is assigned one of the following values:

| IBM Extension

Stat value | Error condition
0 No error
1 Error in system routine attempting to do allocation
2 An invalid data object has been specified for allocation
3 Both error conditions 1 and 2 have occurred

| End of IBM Extension

Allocating an allocatable object that is already allocated causes an error condition
in the ALLOCATE statement.

228 XL Fortran Advanced Edition for Mac OS X: Language Reference

ALLOCATE

Pointer allocation creates an object that has the TARGET attribute. Additional
pointers can be associated with this target (or a subobject of it) through pointer
assignment. If you reallocate a pointer that is already associated with a target:

* A new target is created and the pointer becomes associated with this target
* Any previous association with the pointer is broken

* Any previous target that had been created by allocation and is not associated
with any other pointers becomes inaccessible

When an object of derived type is created by an ALLOCATE statement, any
allocatable ultimate components have an allocation status of not currently
allocated.

Use the ALLOCATED intrinsic function to determine if an allocatable object is
currently allocated. Use the ASSOCIATED intrinsic function to determine the
association status of a pointer or whether a pointer is currently associated with a
specified target.

Examples

CHARACTER, POINTER :: P(:,:)
CHARACTER, TARGET :: C(4,4)
INTEGER, ALLOCATABLE, DIMENSION(:) :: A

P =>7C

N=2;M=N

ALLOCATE (P(N,M),STAT=I) ! P is no longer associated with C
N=3 ! Target array for P maintains 2X2 shape
IF (.NOT.ALLOCATED(A)) ALLOCATE (A(N%%2))

END

Related Information
+ ["ALLOCATABLE” on page 226
+ "'DEALLOCATE” on page 260
+ |“Allocation Status” on page 61|

+ |[“Pointer Association” on page 133

* [“Deferred-Shape Arrays” on page 70|

 ["ALLOCATED(ARRAY) or ALLOCATED(SCALAR)” on page 432
* [“ASSOCIATED(POINTER, TARGET)” on page 435

« [“Allocatable Objects as Dummy Arguments” on page 162|

« |”Allocatable Components” on page 41|

ASSIGN

Purpose

The ASSIGN statement assigns a statement label to an integer variable.

Syntax

»>—ASSIGN—stmt_label—T0—variable_name ><

Statements and Attributes 229

ASSIGN

stmt_label
specifies the statement label of an executable statement or a FORMAT
statement in the scoping unit containing the ASSIGN statement

variable_name
is the name of a scalar INTEGER(4) or INTEGER(8) variable

Rules

A statement containing the designated statement label must appear in the same
scoping unit as the ASSIGN statement.

* If the statement containing the statement label is an executable statement, you
can use the label name in an fassigned GO TO statement that is in the same
scoping unit.

o If the statement containing the statement label is a statement, you can
use the label name as the [format specifier|in a READ, WRITE, or PRINT
statement that is in the same scoping unit.

You can redefine an integer variable defined with a statement label value with the
same or different statement label value or an integer value. However, you must
define the variable with a statement label value before you reference it in an
assigned GO TO statement or as a format identifier in an input/output statement.

The value of variable_name is not the integer constant represented by the label itself,
and you cannot use it as such.

| Fortran 95 |

The ASSIGN statement has been deleted from Fortran 95.

| End of Fortran 95 |

Examples

ASSIGN 30 TO LABEL

NUM = 40

GO TO LABEL

NUM = 50 ! This statement is not executed
30 ASSIGN 1000 TO IFMT

PRINT IFMT, NUM I IFMT is the format specifier
1000 FORMAT(1X,I4)

END

Related Information

+ [“Statement Labels” on page 11|

+ [“GO TO (Assigned)” on page 301
* [“Deleted Features” on page 606|

AUTOMATIC

| IBM Extension

Purpose

The AUTOMATIC attribute specifies that a variable has a storage class of
automatic; that is, the variable is not defined once the procedure ends.

230 XL Fortran Advanced Edition for Mac OS X: Language Reference

AUTOMATIC

Syntax

Rules

»—AUTOMATIC—L—_I—automat ic_list <

automatic
is a variable name or an array declarator with an explicit-shape
specification list or a deferred-shape specification list

If automatic is a function result it must not be of type character or of derived type.

Function results that are pointers or arrays, dummy arguments, statement
functions, automatic objects, or pointees must not have the AUTOMATIC
attribute. A variable with the AUTOMATIC attribute cannot be defined in the
scoping unit of a module. A variable that is explicitly declared with the
AUTOMATIC attribute cannot be a common block item.

A variable must not have the AUTOMATIC attribute specified more than once in
the same scoping unit.

Any variable declared as AUTOMATIC within the scope of a thread’s work will
be local to that thread.

A variable with the AUTOMATIC attribute cannot be initialized by a DATA
statement or a type declaration statement.

If automatic is a pointer, the AUTOMATIC attribute applies to the pointer itself,
not to any target that is (or may become) associated with the pointer.

Note: An object with the AUTOMATIC attribute should not be confused with an
automatic object. See [”Automatic Objects” on page 22|

Attributes Compatible with the AUTOMATIC Attribute

Examples

* JALLOCATABLE * [POINTE * [VOLATILE
» [IDIMENSIO * [TARGET

CALL SuB

CONTAINS

SUBROUTINE SUB
INTEGER, AUTOMATIC :: VAR
VAR = 12
END SUBROUTINE ! VAR becomes undefined
END

Statements and Attributes 231

AUTOMATIC

Related Information
« |“Storage Classes for Variables” on page 62|

* |-ginitauto Option|in the [User’s Guide|

| End of IBM Extension

BACKSPACE

Purpose

The BACKSPACE statement positions an external file connected for sequential or
formatted stream access.

Syntax

»>—BACKSPACE

\4
A

|—(—position_l ist—)—|

u is an external unit identifier. The value of u must not be an asterisk or a
Hollerith constant.

position_list
is a list that must contain one unit specifier ((UNIT=]u) and can also
contain one of each of the other valid specifiers:

[UNIT=] u
is a unit specifier in which # must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file
that is represented by a scalar integer expression, whose value is in the
range 1 through 2147483647. If the optional characters UNIT= are omitted,
u must be the first item in position_list.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is a scalar variable of type INTEGER(4) or
default integer. When the BACKSPACE statement finishes executing, ios is
defined with:
* A zero value if no error condition occurs

* A positive value if an error occurs.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

Rules

After the execution of a BACKSPACE statement, the file position is before the
current record if a current record exists. If there is no current record, the file
position is before the preceding record. If the file is at its initial point, file position
remains unchanged.

232 XL Fortran Advanced Edition for Mac OS X: Language Reference

BACKSPACE

You cannot backspace over records that were written using list-directed or
formatting.

For sequential access, if the preceding record is the endfile record, the file is
positioned before the endfile record.

If the ERR= and IOSTAT= specifiers are set and an error is encountered, transfer is
made to the statement specified by the ERR= specifier and a positive integer value
is assigned to ios.

| IBM Extension |

If IOSTAT= and ERR= are not specified,
* The program stops if a severe error is encountered.

* The program continues to the next statement if a recoverable error is
encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

| End of IBM Extension |

Examples

BACKSPACE 15
BACKSPACE (UNIT=15,ERR=99)

99 PRINT *, "Unable to backspace file."
END

Related Information
+ |“Conditions and IOSTAT Values” on page 181
+ |“Understanding XL Fortran Input/Output” on page 173

* |Setting Run-time Options|in the

BLOCK DATA

Purpose

A BLOCK DATA statement is the first statement in a block data program unit,
which provides initial values for variables in named common blocks.

Syntax

»>—BLOCK DATA C] ><
block_data_name

block_data_name
is the name of a block data program unit

Rules

You can have more than one block data program unit in an executable program,
but only one can be unnamed.

Statements and Attributes 233

BLOCK DATA

The name of the block data program unit, if given, must not be the same as an
external subprogram, entry, main program, module, or common block in the
executable program. It also must not be the same as a local entity in this program
unit.

Examples

BLOCK DATA ABC
PARAMETER (I=10)
DIMENSION Y(5)
COMMON /L4/ Y
DATA Y /5%1/

END BLOCK DATA ABC

Related Information

* |“Block Data Program Unit” on page 149
* ["/END” on page 275' for details on the END BLOCK DATA statement

BYTE

| IBM Extension

Purpose

The BYTE type declaration statement specifies the attributes of objects and
functions of type byte. Each scalar object has a length of 1. Initial values can be
assigned to objects.

Syntax

v
A

»»—BYTE |: entity_decl_list
,—attr_spec_list—::—

where:

attr_spec

ALLOCATABLE
AUTOMATIC
DIMENSION (array_spec)
EXTERNAL

INTENT (intent_spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

234 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

BYTE (IBM Extension)

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

is the double colon separator. Use the double colon separator when you
specify attributes, =initialization_expr, or => NULL().

array_spec
is a list of dimension bounds

entity_decl

> <
|—(—ar‘r‘ay_spec—)J |——/—initial_value_lz'st—/
=—initialization_expr
L => —NULL()

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

initial_value
provides an initial value for the entity specified by the immediately
preceding name

initialization_expr
provides an initial value, by means of an initialization expression,
for the entity specified by the immediately preceding name

=> NULL()
provides the initial value for the pointer object

Within the context of a derived type definition:

* If => appears in a component initialization, the POINTER attribute must appear
in the attr_spec_list.

* If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

* The compiler will evaluate initialization_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute

statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The

Statements and Attributes 235

BYTE (IBM Extension)

appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a function result, an object in blank common, an
integer pointer, an external name, an intrinsic name, or an automatic object. Nor
can an object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit or
if it appears in a named common block in a module.

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of
a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER

attribute. If initialization_expr or NULLO[_re5_4 is specified, and the
entity you are declaring:

e is a variable, the variable is initially defined.

| Fortran 95

* is a derived type component, the derived type has default initialization.

| End of Fortran 95

a becomes defined with the value determined by initialization_expr, in accordance
with the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit.

A variable or variable subobject cannot be initialized more than once. If a is a

variable, the presence of initialization_expr or NULLO[_rs5_4 implies that
a is a saved object, except for an object in a named common block. The

initialization of an object could affect the fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or POINTER
attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

If T or F, defined previously as the name of a constant, appears in a type

declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

236 XL Fortran Advanced Edition for Mac OS X: Language Reference

BYTE (IBM Extension)

Examples
BYTE, DIMENSION(4) :: X=(/1,2,3,4/)

Related Information
* |“BYTE” on page 32|

+ [“Initialization Expressions” on page 87

* |"How Type Is Determined” on page 57 for details on the implicit typing rules

* |“Automatic Objects” on page 22

+ [“Storage Classes for Variables” on page 62

* |'DATA” on page 256/ for details on initial values

| End of IBM Extension

CALL
Purpose
The CALL statement invokes a subroutine to be executed.
Syntax
»»—CALL—name ><
» .

l—actual_argument_spec_l ist—l

name is the name of an internal, external, or module subroutine, an entry in an
external or module subroutine, an intrinsic subroutine, or a generic name.

Rules
Executing a CALL statement results in the following order of events:
1. Actual arguments that are expressions are evaluated.

2. Actual arguments are associated with their corresponding dummy arguments.

w

Control transfers to the specified subroutine.

»

The subroutine is executed.

Control returns from the subroutine.

o

A subprogram can call itself recursively, directly or indirectly, if the subroutine
statement specifies the RECURSIVE keyword.

| IBM Extension |

An external subprogram can also refer to itself directly or indirectly if the -qrecur
compiler option is specified.

| End of IBM Extension |

If a CALL statement includes one or more alternate return specifiers among its
arguments, control may be transferred to one of the statement labels indicated,

Statements and Attributes 237

CALL

depending on the action specified by the subroutine in the RETURN statement.

| IBM Extension

The argument list built-in functions % VAL and %REF are supplied to aid
interlanguage calls by allowing arguments to be passed by value and by reference,
respectively. They can only be specified in non-Fortran procedure references.

The [VALUE] attribute also allows you to pass arguments by value.
| End of IBM Extension

Examples

INTERFACE

SUBROUTINE SUB3(D1,D2)

REAL D1,D2

END SUBROUTINE
END INTERFACE
ARG1=7 ; ARG2=8
CALL SUB3(D2=ARG2,D1=ARG1) ! subroutine call with argument keywords
END

SUBROUTINE SUB3(F1,F2)
REAL F1,F2,F3,F4
F3 = F1/F2
F4 = F1-F2
PRINT *, F3, F4
END SUBROUTINE

Related Information
+ |[“Recursion” on page 166|
* [“%VAL and %REF” on page 157
+ |“Actual Argument Specification” on page 153

* |“Asterisks as Dummy Arguments” on page 164

CASE

Purpose

The CASE statement initiates a CASE statement block in a CASE construct, which
has a concise syntax for selecting, at most, one of a number of statement blocks for
execution.

Syntax

»»—CASE—case selector >«
- I—(:ase_(:onstruct_name—|

case_selector

238 XL Fortran Advanced Edition for Mac OS X: Language Reference

CASE

DEFAULT

(—Y——case_value)J

low_case_value—:—high_case_value—
low_case_value—:
:—high_case _value

A\
A

case_construct_name
Is a name that identifies the CASE construct.

case_value
is a scalar initialization expression of type integer, character, or logical

low_case_value, high_case_value
are each scalar initialization expressions of type integer, character, or
logical

Rules

The case index, determined by the SELECT CASE statement, is compared to each
case_selector in a CASE statement. When a match occurs, the stmt_block associated
with that CASE statement is executed. If no match occurs, no stmt_block is
executed. No two case value ranges can overlap.
A match is determined as follows:
case_value

DATA TYPE: integer, character or logical

MATCH for integer and character: case index = case_value

MATCH for logical: case index .EQV. case_value is
true

low_case_value : high_case_value
DATA TYPE: integer or character

MATCH: low_case_value = case index =
high_case_value

low_case_value :
DATA TYPE: integer or character
MATCH: low_case_value = case index
: high_case_value
DATA TYPE: integer or character
MATCH: case index = high_case_value
DEFAULT

DATA TYPE: not applicable
MATCH: if no other match occurs.

There must be only one match. If there is a match, the statement block associated
with the matched case_selector is executed, completing execution of the case
construct. If there is no match, execution of the case construct is complete.

Statements and Attributes 239

CASE

If the case_construct_name is specified, it must match the name specified on the
SELECT CASE and END SELECT statements.

DEFAULT is the default case_selector. Only one of the CASE statements may have
DEFAULT as the case_selector.

Each case value must be of the same data type as the case_expr, as defined in the
SELECT CASE statement. If any typeless constants or BYTE named constants are
encountered in the case_selectors, they are converted to the data type of the
case_expr.

When the case_expr and the case values are of type character, they can have
different lengths. If you specify the -qctyplss compiler option, a character constant
expression used as the case_expr remains as type character. The character constant
expression will not be treated as a typeless constant.

Examples
ZERO: SELECT CASE(N)

CASE DEFAULT ZERO I Default CASE statement for
I CASE construct ZERO
OTHER: SELECT CASE(N)
CASE(:-1) I CASE statement for CASE
I construct OTHER
SIGNUM = -1
CASE(1:) OTHER
SIGNUM = 1
END SELECT OTHER
CASE (0)
SIGNUM = 0

END SELECT ZERO

Related Information
+ |“CASE Construct” on page 119
* [“SELECT CASE” on page 366|
« |[“END (Construct)” on page 277, for details on the END SELECT statement

CHARACTER
Purpose
A CHARACTER type declaration statement specifies the kind, length, and
attributes of objects and functions of type character. Initial values can be assigned
to objects.
Syntax
»>—CHARACTER >
|—char_seZectorJ |:::
,—attr_spec_list—::—
»—entity decl list >

240 XL Fortran Advanced Edition for Mac OS X: Language Reference

—KIND—=—int_init_expr

—L—_I—type_param_value
LEN—=

where:

attr_spec

ALLOCATABLE
AUTOMATIC
DIMENSION (array_spec)
EXTERNAL

INTENT (intent_spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

char_selector

specifies the character length.

CHARACTER

IBM Extension

This is the number of characters between 0 and 256 MB. Values exceeding
256 MB are set to 256 MB, while negative values result in a length of zero.
If not specified, the default length is 1. The kind type parameter, if
specified, must be 1, which specifies the ASCII character representation.

End of IBM Extension

—LEN—=—type_param_value—,—KIND—=—int_init_expr

—type_param_value—,—l_—_l—int_in it_expr——
KIND—=

l—,—LEN—=—type_param_vaZue—|

—x—char_length |_ _|

type_param_value

is a specification expression or an asterisk (*)

int_init_expr

A\
A

is a scalar integer initialization expression that must evaluate to 1

char_length

is either a scalar integer literal constant (which cannot specify a
kind type parameter) or a type_param_value enclosed in parentheses

attr_spec

For detailed information on rules about a particular attribute, refer to the

statement of the same name.

Statements and Attributes 241

CHARACTER

intent_spec
is either IN, OUT, or INOUT

is the double colon separator. Use the double colon separator when you
specify attributes, =initialization_expr, or => NULLO[_f95_4.

array_spec
is a list of dimension bounds.

entity_decl
»—q >

I— * —char_Zengt‘h—| l—(—array_spec—)—l
(—array_spec—)— * —char_length

(1)

/—initial value list—/
= —initialization_expr

(2)

=> —NULL()

Notes:
1 IBM Extension
2 Fortran 95

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

| IBM Extension |

initial_value
provides an initial value for the entity specified by the immediately
preceding name

| End of IBM Extension |

initialization_expr
provides an initial value, by means of an initialization expression,
for the entity specified by the immediately preceding name

| Fortran 95

=> NULL()
provides the initial value for the pointer object

| End of Fortran 95

Rules

| Fortran 95 |

Within the context of a derived type definition:

* If => appears in a component initialization, the POINTER attribute must appear
in the attr_spec_list.

242 XL Fortran Advanced Edition for Mac OS X: Language Reference

CHARACTER

* If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

¢ The compiler will evaluate initialization_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.
| End of Fortran 95 |

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object must not be initially defined in a type declaration statement if it is a
dummy argument, an allocatable object, a pointer, a function result, an object in
blank common, an integer pointer, an external name, an intrinsic name, or an
automatic object. Nor can an object be initialized if it has the AUTOMATIC
attribute. The object may be initialized if:

* it appears in a named common block in a block data program unit.

| IBM Extension |

* if it appears in a named common block in a module.

| End of IBM Extension |

| Fortran 95 |

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

| End of Fortran 95 |

The specification expression of a type_param_value or an array_spec can be a
nonconstant expression if the specification expression appears in an interface body
or in the specification part of a subprogram. Any object being declared that uses
this nonconstant expression and is not a dummy argument or a pointee is called an
automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER

attribute. If initialization_expr or NULL(O[_Fs5_4 is specified, and the
entity you are declaring:

Statements and Attributes 243

CHARACTER

* is a variable, the variable is initially defined.

| Fortran 95 |

* is a derived type component, the derived type has default initialization.

| End of Fortran 95 |

a becomes defined with the value determined by initialization_expr, in accordance
with the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit.

A variable or variable subobject cannot be initialized more than once. If 4 is a
variable, the presence of initialization_expr or NULLO[_rs5_4 implies that
a is a saved object, except for an object in a named common block. The
initialization of an object could affect the fundamental storage class of an object.

An array_spec specified in an entity_decl takes precedence over the array_spec in the
DIMENSION attribute. A char_length specified in an entity_decl takes precedence
over any length specified in char_selector.

An array function result that does not have the POINTER attribute must have an
explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

| IBM Extension |

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

| End of IBM Extension

The optional comma after char_length in a CHARACTER type declaration
statement is permitted only if no double colon separator (::) appears in the
statement.

If the CHARACTER type declaration statement is in the scope of a module, block
data program unit, or main program, and you specify the length of the entity as an
inherited length, the entity must be the name of a named character constant. The
character constant assumes the length of its corresponding expression defined by
the PARAMETER attribute.

If the CHARACTER type declaration statement is in the scope of a procedure and
the length of the entity is inherited, the entity name must be the name of a dummy
argument or a named character constant. If the statement is in the scope of an
external function, it can also be the function or entry name in a FUNCTION or
ENTRY statement in the same program unit. If the entity name is the name of a
dummy argument, the dummy argument assumes the length of the associated
actual argument for each reference to the procedure. If the entity name is the name
of a character constant, the character constant assumes the length of its

244 XL Fortran Advanced Edition for Mac OS X: Language Reference

CHARACTER

corresponding expression defined by the PARAMETER attribute. If the entity
name is a function or entry name, the entity assumes the length specified in the
calling scoping unit.

The length of a character function is either a specification expression (which must
be a constant expression if the function type is not declared in an interface block)
or it is an asterisk, indicating the length of a dummy procedure name. The length
cannot be an asterisk if the function is an internal or module function, if it is
recursive, or if it returns array or pointer values.

Examples

CHARACTER(KIND=1,LEN=6) APPLES /'APPLES'/
CHARACTER(7), TARGET :: ORANGES = 'ORANGES'
1=7
CALL TEST(APPLES,I)
CONTAINS
SUBROUTINE TEST(VARBL,I)
CHARACTER=*(*), OPTIONAL :: VARBL ! VARBL inherits a length of 6
CHARACTER(I) :: RUNTIME I Automatic object with length of 7
END SUBROUTINE
END

Related Information
+ |“Character” on page 29|

+ |“Initialization Expressions” on page 87|

* [“How Type Is Determined” on page 57| for details on the implicit typing rules

* |“Array Declarators” on page 67]

+ |“Automatic Objects” on page 22|

[“Storage Classes for Variables” on page 62

[“DATA” on page 256 for details on initial values

[-gcharlen Option|in the

CLOSE
Pur pose
The CLOSE statement disconnects an external file from a unit.
Syntax
»>—CLOSE—(—close_list—) ><
close_list

is a list that must contain one unit specifier (UNIT=u) and can also contain
one of each of the other valid specifiers. The valid specifiers are:

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file
that is represented by a scalar integer expression, whose value is in the
range 1 through 2147483647. If the optional characters UNIT= are omitted,
u must be the first item in close_list.

Statements and Attributes 245

CLOSE

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is a scalar variable of type INTEGER(4) or
default integer. When the input/output statement containing this specifier
finishes executing, ios is defined with:
* A zero value if no error condition occurs

¢ A positive value if an error occurs.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

STATUS= char_expr
specifies the status of the file after it is closed. char_expr is a scalar

character expression whose value, when any trailing blanks are removed, is
either KEEP or DELETE.

* If KEEP is specified for a file that exists, the file will continue to exist
after the CLOSE statement. If KEEP is specified for a file that does not
exist, the file will not exist after the CLOSE statement. KEEP must not
be specified for a file whose status prior to executing the CLOSE
statement is SCRATCH.

 If DELETE is specified, the file will not exist after the CLOSE statement.

The default is DELETE if the file status is SCRATCH; otherwise, the
default is KEEP.

Rules

A CLOSE statement that refers to a unit can occur in any program unit of an
executable program and need not occur in the same scoping unit as the OPEN
statement referring to that unit. You can specify a unit that does not exist or has no
file connected; the CLOSE statement has no effect in this case.

Unit 0 cannot be closed [_1em_4

When an executable program stops for reasons other than an error condition, all
units that are connected are closed. Each unit is closed with the status KEEP unless
the file status prior to completion was SCRATCH, in which case the unit is closed
with the status DELETE. The effect is as though a CLOSE statement without a
STATUS= specifier were executed on each connected unit.

If a preconnected unit is disconnected by a CLOSE statement, the rules of implicit
opening apply if the unit is later specified in a WRITE statement (without having
been explicitly opened).

Examples

CLOSE(15)
CLOSE(UNIT=16,STATUS="'DELETE")

Related Information

* [“Units” on page 176]

» |“Conditions and IOSTAT Values” on page 181
+ |“OPEN” on page 332|

246 XL Fortran Advanced Edition for Mac OS X: Language Reference

COMMON

COMMON
Purpose
The COMMON statement specifies common blocks and their contents. A common
block is a storage area that two or more scoping units can share, allowing them to
define and reference the same data and to share storage units.
Syntax
»»>—COMMON |_ _| object_list >
/ C] /
common_block_name
v . .
/ /—ob‘]ect_lzst—\J
l— s —| |—common_b lock_n ame—|
object
»>—variable_name |_ _| ><
(—explicit_shape_spec_list—)
Rules

object cannot refer to a dummy argument, automatic object, allocatable object , an
object of a derived type that has an allocatable ultimate component, pointee,
function, function result, or entry to a procedure. object cannot have the STATIC or
AUTOMATIC attributes.

If an explicit_shape_spec_list is present, variable_name must not have the POINTER
attribute. Each dimension bound must be a constant specification expression. This
form specifies that variable_name has the DIMENSION attribute.

If object is of derived type, it must be a sequence derived type. Given a sequenced
structure where all the ultimate components are nonpointers, and are all of
character type or all of type default integer, default real, default complex, default
logical or double precision real, the structure is treated as if its components are
enumerated directly in the common block.

A pointer object in a common block can only be storage associated with pointers of
the same type, type parameters, and rank.

An object in a common block with TARGET attribute can be storage associated

with another object. That object must have the TARGET attribute and have the
same type and type parameters.

Statements and Attributes 247

COMMON

| IBM Extension |

Pointers of type BYTE can be storage associated with pointers of type INTEGER(1)
and LOGICAL(1). Integer and logical pointers of the same length can be storage
associated if you specify the -qintlog compiler option.

| End of IBM Extension |

If you specify common_block_name, all variables specified in the object_list that
follows are declared to be in that named common block. If you omit
common_block_name, all variables that you specify in the object_list that follows are
in the blank common block.

Within a scoping unit, a common block name can appear more than once in the
same or in different COMMON statements. Each successive appearance of the
same common block name continues the common block specified by that name.
Common block names are global entities.

The variables in a common block can have different data types. You can mix
character and noncharacter data types within the same common block. Variable
names in common blocks can appear in only one COMMON statement in a
scoping unit, and you cannot duplicate them within the same COMMON
statement.

Common Association

Within an executable program, all nonzero-sized named common blocks with the
same name have the same first storage unit. There can be one blank common
block, and all scoping units that refer to nonzero-sized blank common refer to the
same first storage unit.

All zero-sized common blocks with the same name are storage-associated with one
another. All zero-sized blank common blocks are associated with one another and
with the first storage unit of any nonzero-sized blank common blocks. Use
association or host association can cause these associated objects to be accessible in
the same scoping unit.

Because association is by storage unit, variables in a common block can have
different names and types in different scoping units.

Common Block Storage Sequence: Storage units for variables within a common
block in a scoping unit are assigned in the order that their names appear within
the COMMON statement.

You can extend a common block by using an [EQUIVALENCE] statement, but only
by adding beyond the last entry, not before the first entry. For example, these
statements specify X:

COMMON /X/ A,B ! common block named X

REAL C(2)
EQUIVALENCE (B,C)

The contents of common block X are as follows:

Variable A: A
Variable B: B
Array C: c(1) c(2) |

248 XL Fortran Advanced Edition for Mac OS X: Language Reference

COMMON

Only COMMON and EQUIVALENCE statements that appear in a scoping unit
contribute to the common block storage sequences formed in that unit, not
including variables in common made accessible by use association or host
association.

An EQUIVALENCE statement cannot cause the storage sequences of two different
common blocks to become associated. While a common block can be declared in
the scoping unit of a module, it must not be declared in another scoping unit that
accesses entities from the module through use association.

Use of COMMON can lead to misaligned data. Any use of misaligned data can
adversely affect the performance of the program.

Size of a Common Block: The size of a common block is equal to the number of
bytes of storage needed to hold all the variables in the common block, including
any extensions resulting from equivalence association.

Differences Between Named and Blank Common Blocks:

¢ Within an executable program, there can be more than one named common
block, but only one blank common block.

* In all scoping units of an executable program, named common blocks of the
same name must have the same size, but blank common blocks can have
different sizes. (If you specify blank common blocks with different sizes in
different scoping units, the length of the longest block becomes the length of the
blank common block in the executable program.)

* You can initially define objects in a named common block by using a[BLOC
program unit containing a |[DATA|statement or a type declaration

statement. You cannot initially define any elements of a common block in a
blank common block.

If a named common block, or any part of it, is initialized in more than one
scoping unit, the initial value is undefined. To avoid this problem, use block

data program units or modules _iBm 4 to initialize named common

blocks; each named common block should be initialized in only one block data

program unit or module[M 4.

Examples

INTEGER MONTH,DAY,YEAR
COMMON /DATE/ MONTH,DAY,YEAR

REAL R4
REAL R8
CHARACTER(1) C1
COMMON /NOALIGN/ R8,C1,R4 ! R4 will not be aligned on a

I full-word boundary

Related Information
* [“Block Data Program Unit” on page 149

* |“Explicit-Shape Arrays” on page 68

* |“The Scope of a Name” on page 128 | for details on global entities

» [“Storage Classes for Variables” on page 62

Statements and Attributes 249

COMPLEX

COMPLEX

Purpose

A COMPLEX type declaration statement specifies the length and attributes of
objects and functions of type complex. Initial values can be assigned to objects.

Syntax

»>—COMPLEX

entity decl list—>=

|—kind_selector—| i:::
,—attr_spec_list—::—

where:

attr_spec

ALLOCATABLE
AUTOMATIC
DIMENSION (array_spec)
EXTERNAL

INTENT (intent_spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

kind_selector

\4
A

(|_ _| int_initialization_expr—)
KIND— =

(1)

* —int_literal_constant

Notes:
1 IBM Extension.

specifies the length of complex entities:

IBM Extension

e If int_initialization_expr is specified, the valid values are 4, 8 and 16.
These values represent the precision and range of each part of the
complex entity.

e If the *int_literal_constant form is specified, the valid values are 8, 16 and
32. These values represent the length of the whole complex entity, and

250 XL Fortran Advanced Edition for Mac OS X: Language Reference

COMPLEX

correspond to the values allowed for the alternative form.
int_literal_constant cannot specify a kind type parameter.

| End of IBM Extension |

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

is the double colon separator. Use the double colon separator when you
specify attributes, =initialization_expr, or => NULLO[_Ff95_ 4.

array_spec
is a list of dimension bounds.

entity_decl

>»—q >
L (1) l—(—array_spec—)—l
* —len

(2)

(—array_spec—)— * —len

y
v
A

(3)

/—initial_value_list—/
= —initialization_expr

(4)

=> —NULL()

Notes:

1 IBM Extension.
2 IBM Extension.
3 IBM Extension.
4

Fortran 95.

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

| IBM Extension |

len overrides the length as specified in kind_selector, and cannot specify
a kind type parameter. The entity length must be an integer literal
constant that represents one of the permissible length
specifications.

| End of IBM Extension |

| IBM Extension |

Statements and Attributes 251

COMPLEX

initial_value
provides an initial value for the entity specified by the immediately
preceding name

| End of IBM Extension |

initialization_expr
provides an initial value, by means of an initialization expression,
for the entity specified by the immediately preceding name

| Fortran 95

=> NULL()
provides an initial value for the pointer object

| End of Fortran 95

Rules

| Fortran 95 |

Within the context of a derived type definition:

 If => appears in a component initialization, the POINTER attribute must appear
in the attr_spec_list.

* If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

e The compiler will evaluate initialization_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.

| End of Fortran 95 |

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a pointer, a function result, an object in blank
common, an integer pointer, an external name, an intrinsic name, or an automatic
object. Nor can an object be initialized if it has the AUTOMATIC attribute. The
object may be initialized if:

* it appears in a named common block in a block data program unit.

| IBM Extension

252 XL Fortran Advanced Edition for Mac OS X: Language Reference

COMPLEX

e if it appears in a named common block in a module.

| End of IBM Extension |

| Fortran 95 |

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

| End of Fortran 95 |

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of

a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER
attribute. If initialization_expr or NULL(O[_Fs5_4 is specified, and the

entity you are declaring:

* is a variable, the variable is initially defined.

| Fortran 95 |

* is a derived type component, the derived type has default initialization.

| End of Fortran 95 |

a becomes defined with the value determined by initialization_expr, in accordance
with the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit.

A variable or variable subobject cannot be initialized more than once. If 2 is a

variable, the presence of initialization_expr or NULLO[_fs5__4 implies that
a is a saved object, except for an object in a named common block. The

initialization of an object could affect the fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or POINTER
attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

| IBM Extension |

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

| End of IBM Extension |

Statements and Attributes 253

COMPLEX

Examples
COMPLEX, DIMENSION (2,3) :: ABC(3) ! ABC has 3 (not 6) array elements

Related Information
+ [“Complex” on page 26|

+ [“Initialization Expressions” on page 87

* |"How Type Is Determined” on page 57) for details on the implicit typing rules

* |“Array Declarators” on page 67

* [“Automatic Objects” on page 22|

» |“Storage Classes for Variables” on page 62|

* |'DATA” on page 256 for details on initial values

CONTAINS
Purpose
The CONTAINS statement separates the body of a main program, external
subprogram, or module subprogram from any internal subprograms that it may
contain. Similarly, it separates the specification part of a module from any module
subprograms.
Syntax
»>—CONTAINS ><
Rules
When a CONTAINS statement exists, at least one subprogram must follow it.
The CONTAINS statement cannot appear in a block data program unit or in an
internal subprogram.
Any label of a CONTAINS statement is considered part of the main program,
subprogram, or module that contains the CONTAINS statement.
Examples
MODULE A
CONﬁ\iNS ! Module subprogram must follow

SUBROUTINE B(X)

CONTAINS I Internal subprogram must follow
FUNCTION C(Y)

END FUNCTION

END SUBROUTINE
END MODULE

Related Information

+ |“Program Units, Procedures, and Subprograms” on page 134

254 XL Fortran Advanced Edition for Mac OS X: Language Reference

CONTINUE

CONTINUE

Purpose

The CONTINUE statement is an executable control statement that takes no action;
it has no effect. This statement is often used as the terminal statement of a loop.

Syntax

»>—CONTINUE

\4
A

Examples

DO 100 T = 1,N
X=X+N
100 CONTINUE

Related Information

+ |“Control Structures” on page 117]

CYCLE
Purpose
The CYCLE statement terminates the current execution cycle of a or @
HILE] construct.
Syntax
»»—CYCLE e

Rules

|—DO_cons truc i,‘_name—|

DO_construct_name
is the name of a DO or DO WHILE construct

The CYCLE statement is placed within a DO or DO WHILE construct and belongs
to the particular DO or DO WHILE construct specified by DO_construct_name or, if
not specified, to the DO or DO WHILE construct that immediately surrounds it.
The statement terminates only the current cycle of the construct that it belongs to.

When the CYCLE statement is executed, the current execution cycle of the DO or
DO WHILE construct is terminated. Any executable statements after the CYCLE
statement, including any terminating labeled action statement, will not be
executed. For DO constructs, program execution continues with incrementation
processing, if any. For DO WHILE constructs, program execution continues with
loop control processing.

A CYCLE statement can have a statement label. However, it cannot be used as a
labeled action statement that terminates a DO construct.

Statements and Attributes 255

CYCLE

Examples
LOOP1: DO I =1, 20
N=N+1
IF (N > NMAX) CYCLE LOOP1 I cycle to LOOP1
LOOP2: DO WHILE (K==1)
IF (K > KMAX) CYCLE ! cycle to LOOP2
K=K+1

END DO LOOP2

LOOP3: DO J =1, 10

N=N+1
IF (N > NMAX) CYCLE LOOP1 ! cycle to LOOP1
CYCLE LOOP3 ! cycle to LOOP3

END DO LOOP3

END DO LOOP1
END

Related Information
+ [“DO” on page 263
+ [“DO WHILE” on page 265|

DATA

Purpose

The DATA statement provides initial values for variables.

Syntax

]

»»—DATA—"—data object list—/—initial _value list—/ >

A

data_object
is a variable or an implied-DO list. Any subscript or substring expression
must be an initialization expression.

implied-DO list

»»—(—do_object_list—,—do_variable— = —integer_exprl—,—integer_expr2) —><

l—,—integer_expr3—|

do_object
is an array element, scalar structure component, substring, or
implied-DO list

do_variable
is a named scalar integer variable called the implied-DO variable.
This variable is a statement entity.

256 XL Fortran Advanced Edition for Mac OS X: Language Reference

»> data value
L . -

Rules

DATA

integer_exprl, integer_expr2, and integer_expr3
are each scalar integer expressions. The primaries of an expression
can only contain constants or implied-DO variables of other
implied-DO lists that have this implied-DO list within their
ranges. Each operation must be intrinsic.

initial_value

v
A

is a nonnegative scalar integer constant. If 7 is a named constant, it
must have been declared previously in the scoping unit or made
accessible by use or host association.

| Fortran 95 |

r is also a nonnegative scalar integer subobject of a constant.
Similar to the above paragraph, if it is a subobject of a named
constant, it must have been declared previously in the scoping unit
or made accessible by use or host association.

| End of Fortran 95 |

If r is a subobject of a constant, any subscript in it is an
initialization expression. If r is omitted, the default value is 1. The
form rxdata_value is equivalent to r successive appearances of the
data value.

data_value
is a scalar constant, signed integer literal constant, signed real
literal constant, structure constructor, scalar subobject of a

constant, or NULLJ().

Specifying a non-pointer array object as a data_object is the same as specifying a list
of all the elements in the array object in the order they are stored.

| Fortran 95 |

An array with pointer attribute has only one corresponding initial value which is
NULLJ).

| End of Fortran 95 |

Each data_object_list must specify the same number of items as its corresponding
initial_value_list. There is a one-to-one correspondence between the items in these
two lists. This correspondence establishes the initial value of each data_object.

| Fortran 95 |

For pointer initialization, if the data_value is NULL() then the corresponding
data_object must have pointer attribute. If the data_object has pointer attribute then

Statements and Attributes 257

DATA

the corresponding data_value must be NULL().
| End of Fortran 95

The definition of each data_object by its corresponding initial_value must follow the
rules for intrinsic assignment, except as noted under|“Using Typeless Constants”|
fon page 54]

If initial_value is a structure constructor, each component must be an initialization
expression. If data_object is a variable, any substring, subscript, or stride
expressions must be initialization expressions.

If data_value is a named constant or a subobject of a named constant, the named
constant must have been previously declared in the scoping unit, or made
accessible by host or use association. If data_value is a structure constructor, the
derived type must have been previously declared in the scoping unit, or made
accessible by host or use association.

Zero-sized arrays, implied-DO lists with iteration counts of zero, and values with a
repeat factor of zero contribute no variables to the expanded initial_value_list,
although a zero-length scalar character variable contributes one variable to the list.

You can use an implied-DO list in a DATA statement to initialize array elements,
scalar structure components and substrings. The implied-DO list is expanded into
a sequence of scalar structure components, array elements, or substrings, under the
control of the implied-DO variable. Array elements and scalar structure
components must not have constant parents. Each scalar structure component must
contain at least one component reference that specifies a subscript list.

The range of an implied-DO list is the do_object_list. The iteration count and the
values of the implied-DO variable are established from integer_exprl, integer_expr2,
and integer_expr3, the same as for a DO statement. When the implied-DO list is
executed, it specifies the items in the do_object_list once for each iteration of the
implied-DO list, with the appropriate substitution of values for any occurrence of
the implied-DO variables. If the implied-DO variable has an iteration count of 0,
no variables are added to the expanded sequence.

Each subscript expression in a do_object can only contain constants or implied-DO
variables of implied-DO lists that have the subscript expression within their
ranges. Each operation must be intrinsic.

| IBM Extension

To initialize list items of type logical with logical constants, you can also use the
abbreviated forms (T for .TRUE. and F for .FALSE.). If T or F is a constant name
that was defined previously with the attribute, XL Fortran
recognizes it as the named constant and assigns its value to the corresponding list

item in the DATA statement.

| End of IBM Extension

In a block data program unit, you can use a DATA statement or type declaration
statement to provide an initial value for a variable in a named common block.

258 XL Fortran Advanced Edition for Mac OS X: Language Reference

DATA

In an internal or module subprogram, if the data_object is the same name as an
entity in the host, and the data_object is not declared in any other specification
statement in the internal subprogram, the data_object must not be referenced or
defined before the DATA statement.

A DATA statement cannot provide an initial value for:
* An automatic object.

* A dummy argument.

. A pointee.
e A variable in a blank common block.

e The result variable of a function.

. A data object whose storage class is automatic.
* A variable that has the ALLOCATABLE attribute.

You must not initialize a variable more than once in an executable program. If you
associate two or more variables, you can only initialize one of the data objects.

Examples
Example 1:

INTEGER Z(100),EVEN_0DD(0:9)
LOGICAL FIRST TIME
CHARACTER*10 CHARARR(1)
DATA FIRST TIME / .TRUE. /
DATA Z / 100%x 0 /
I Implied-DO Tist
DATA (EVEN_ODD(J),J
& , (EVEN_ODD(J) ,J
I Nested example
DIMENSION TDARR(3,4) ! Initializes a two-dimensional array
DATA ((TDARR(I,J),J=1,4),1=1,3) /12 = 0/
! Character substring example
DATA (CHARARR(J)(1:3),J=1,1) /'aaa'/
DATA (CHARARR(J) (4:7),J=1,1) /'bbbb'/
DATA (CHARARR(J) (8:10),J=1,1) /'ccc'/
! CHARARR(1) contains 'aaabbbbccc'

0,8,2) / 5+0/ &
1,9,2) / 51/

Example 2:
TYPE DT
INTEGER :: COUNT(2)
END TYPE DT
TYPE(DT), PARAMETER, DIMENSION(3) :: SPARM = DT ((/3,5/))
INTEGER :: A(5)

DATA A /SPARM(2)%COUNT(2) * 10/

Related Information
» |“Data Types and Data Objects” on page 21|

» [“Executing a DO Statement” on page 123

“Statement and Construct Entities” on page 13()

Statements and Attributes 259

DEALLOCATE

DEALLOCATE

Purpose

The DEALLOCATE statement dynamically deallocates allocatable objects and
pointer targets. A specified pointer becomes disassociated, while any other pointers
associated with the target become undefined.

Syntax

»>—DEALLOCATE—(—allocate_object_list) ><

|—,—STAT— = —stat_variab Ze—|

object is a pointer or an allocatable object

stat_variable
is a scalar integer variable

Rules

An allocatable object that appears in a DEALLOCATE statement must be currently
allocated. An allocatable object with the TARGET attribute cannot be deallocated
through an associated pointer. Deallocation of such an object causes the association
status of any associated pointer to become undefined. An allocatable object that
has an undefined allocation status cannot be subsequently referenced, defined,
allocated, or deallocated. Successful execution of a DEALLOCATE statement
causes the allocation status of an allocatable object to become not allocated.

When a variable of derived type is deallocated, any allocated subobject with the
ALLOCATABLE attribute is also deallocated.

When an intrinsic assignment statement is executed, any allocated subobject of the
variable is deallocated before the assignment takes place.

A pointer that appears in a DEALLOCATE statement must be associated with a
whole target that was created with an ALLOCATE statement. Deallocation of a
pointer target causes the association status of any other pointer associated with all
or part of the target to become undefined.

Tips
Use the DEALLOCATE statement instead of the NULLIFY statement if no
other pointer is associated with the allocated memory.

Deallocate memory that a pointer function has allocated.

If the STAT= specifier is not present and an error condition occurs during
execution of the statement, the program terminates. If the STAT= specifier is
present, stat_variable is assigned one of the following values:

260 XL Fortran Advanced Edition for Mac OS X: Language Reference

DEALLOCATE

IBM Extension |

Stat value |Error condition
0 No error
1 Error in system routine attempting to do deallocation
2 An invalid data object has been specified for deallocation
3 Both error conditions 1 and 2 have occurred

| End of IBM Extension

An allocate_object must not depend on the value, bounds, allocation status, or
association status of another allocate_object in the same DEALLOCATE statement;
nor does it depend on the value of the stat_variable in the same DEALLOCATE
statement.

stat_variable must not be deallocated within the same DEALLOCATE statement.
The variable must not depend on the value, bounds, allocation status, or
association status of any allocate_object in the same DEALLOCATE statement.

Examples

INTEGER, ALLOCATABLE :: A(:,:)
INTEGER X,Y

ALLOCATE (A(X,Y))

DEALLOCATE (A,STAT=I)
END

Related Information
 [“ALLOCATE” on page 227]
+ ["ALLOCATABLE” on page 226|
« |”Allocation Status” on page 61|

* [“Pointer Association” on page 133

* |"Deferred-Shape Arrays” on page 70|

« |”Allocatable Objects as Dummy Arguments” on page 162|

* |“Allocatable Components” on page 41|

Derived Type

Purpose

The Derived Type statement is the first statement of a derived-type definition.

Syntax

Statements and Attributes 261

Derived Type

A\
A

»>—TYPE type_name
| N

l—,—access_spec—l

access_spec
is either PRIVATE or PUBLIC

type_name

is the name of the derived type

Rules

access_spec can only be specified if the derived-type definition is within the
specification part of a module.

type_name cannot be the same as the name of any intrinsic type, except BYTE and
DOUBLECOMPLEX, or the name of any other accessible derived type.

If a label is specified on the Derived Type statement, the label belongs to the
scoping unit of the derived-type definition.

If the corresponding END TYPE statement specifies a name, it must be the same as

type_name.
Examples
MODULE ABC
TYPE, PRIVATE :: SYSTEM ! Derived type SYSTEM can only be accessed
SEQUENCE ! within module ABC

REAL :: PRIMARY
REAL :: SECONDARY
CHARACTER(20) , DIMENSION(5) :: STAFF
END TYPE
END MODULE

Related Information
* |"Derived Types” on page 33|
* |"END TYPE” on page 280}
* |"'SEQUENCE” on page 367
* ["PRIVATE” on page 346

DIMENSION

Purpose
The DIMENSION attribute specifies the name and dimensions of an array.

Syntax

262 XL Fortran Advanced Edition for Mac OS X: Language Reference

DIMENSION

A\
A

»—DIMENSION—L—_I—array_declarator_l ist

Rules
According to Fortran 95, you can specify an array with up to seven dimensions.
| IBM Extension |
With XL Fortran, you can specify up to 20 dimensions.
| End of IBM Extension |
Only one dimension specification for an array name can appear in a scoping unit.
— Attributes Compatible with the DIMENSION Attribute
* ALLOCATABLE * [IPARAMETE * [PUBLIC
* AUTOMATIC * |POINTE * |[SAVE
* [INTEN e [PRIVATE * [STATIC
* [OPTIONAL * |IPROTECTED * [TARGET]
* [VOLATILE
Examples
CALL SUB(5,6)
CONTAINS
SUBROUTINE SUB(I,M)
DIMENSION LIST1(I,M) ! automatic array
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: A ! deferred-shape array

END SUBROUTINE
END

Related Information
e |”Array Concepts” on page 6
* [“"VIRTUAL” on page 38

DO

Purpose

The DO statement controls the execution of the statements that follow it, up to and
including a specified terminal statement. Together, these statements form a DO
construct.

Syntax

Statements and Attributes 263

DO

A\

DO
|—DO_cons truc 1.‘_name—:—| l—s tmt_labe Z—|

Lrvaa)*_name = a_exprl, a_expr2 |_ _| |
, a_expr3

s

»
>

v
A

DO_construct_name
is a name that identifies the DO construct.

stmt_label
is the statement label of an executable statement appearing after the DO
statement in the same scoping unit. This statement denotes the end of the
DO construct.

var_name
is a scalar variable name of type integer or real, called the DO variable

a_exprl, a_expr2, and a_expr3
are each scalar expressions of type integer or real

Rules

If you specify a DO_construct_name on the DO statement, you must terminate the
construct with an END DO and the same DO_construct_name. Conversely, if you
do not specify a DO_construct_name on the DO statement, and you terminate the
DO construct with an END DO statement, you must not have a
DO_construct_name on the END DO statement.

If you specify a statement label in the DO statement, you must terminate the DO
construct with a statement that is labeled with that statement label. You can
terminate a labeled DO statement with an statement that is labeled with
that statement label, but you cannot terminate it with an unlabeled END DO
statement. If you do not specify a label in the DO statement, you must terminate
the DO construct with an END DO statement.

If the control clause (the clause beginning with var_name) is absent, the statement is
an infinite DO. The loop will iterate indefinitely until interrupted (for example, by

the statement).

Examples

INTEGER :: SUM=0
OUTER: DO
INNER: DO M=1,10
READ (5,%) J
IF (J.LE.I) THEN
PRINT *, 'VALUE MUST BE GREATER THAN ', I
CYCLE INNER
END IF
SUM=SUM+J
IF (SUM.GT.500) EXIT OUTER
IF (SUM.GT.100) EXIT INNER
END DO INNER
SUM=SUM+1
1=1+10
END DO OUTER
PRINT %, 'SUM =',SUM
END

264 XL Fortran Advanced Edition for Mac OS X: Language Reference

DO

Related Information

« |"DO Construct” on page 121|

* [“END (Construct)” on page 277, for details on the END DO statement
« |”"EXIT” on page 287

* |“CYCLE” on page 255|

+ |“INDEPENDENT” on page 406|

* |“ASSERT” on page 400
+ ["CNCALL” on page 402|

* ["PERMUTATION” on page 411]

DO WHILE

Purpose

The DO WHILE statement is the first statement in the DO WHILE construct,
which indicates that you want the following statement block, up to and including
a specified terminal statement, to be repeatedly executed for as long as the logical
expression specified in the statement continues to be true.

Syntax

Rules

DO >

l—stmt_label—| l—,—l

>

|—DO_cons truct_name—: —|

»—WHILE—(—Ilogical_expr—) ><

DO_construct_name
is a name that identifies the DO WHILE construct

stmt_label
is the statement label of an executable statement appearing after the DO
WHILE statement in the same scoping unit. It denotes the end of the DO
WHILE construct.

logical_expr
is a scalar logical expression

If you specify a DO_construct_name on the DO WHILE statement, you must
terminate the construct with an END DO and the same DO_construct_name.
Conversely, if you do not specify a DO_construct_name on the DO WHILE
statement, and you terminate the DO WHILE construct with an END DO
statement, you must not have a DO_construct_name on the END DO statement.

If you specify a statement label in the DO WHILE statement, you must terminate
the DO WHILE construct with a statement that is labeled with that statement
label. You can terminate a labeled DO WHILE statement with an
statement that is labeled with that statement label, but you cannot terminate it
with an unlabeled END DO statement. If you do not specify a label in the DO
WHILE statement, you must terminate the DO WHILE construct with an END
DO statement.

Statements and Attributes 265

DO WHILE

Examples

10

20

MYDO: DO 10 WHILE (I .LE. 5)

SUM = SUM + INC
I=1+1

END DO MYDO

END

SUBROUTINE EXAMPLE2
REAL X(10)
LOGICAL FLAGL
DATA FLAGL /.TRUE./
DO 20 WHILE (I .LE. 10)
X(I) = A
I=1+1
IF (.NOT. FLAGL) STOP
END SUBROUTINE EXAMPLE2

Related Information

I MYDO is the construct name

« |“"DO WHILE Construct” on page 125

+ |“END (Construct)” on page 277, for details on the END DO statement

 |“EXIT” on page 287

 [“CYCLE” on page 255|

DOUBLE COMPLEX

Purpose

IBM Extension

A DOUBLE COMPLEX type declaration statement specifies the attributes of
objects and functions of type double complex. Initial values can be assigned to
objects.

Syntax

»>—DOUBLE COMPLEX

entity decl list

ii,—attr_spec_list—: -

266 XL Fortran Advanced Edition for Mac OS X: Language Reference

where:

DOUBLE COMPLEX (IBM Extension)

attr_spec

ALLOCATABLE
AUTOMATIC
DIMENSION (array_spec)
EXTERNAL

INTENT (intent_spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

attr_spec For detailed information on rules about a particular attribute, refer
to the statement of the same name.

intent_spec is either IN, OUT, or INOUT

is the double colon separator. Use the double colon separator when
you specify attributes, =initialization_expr, or => NULL()

array_spec is a list of dimension bounds

entity_decl

/—initial value list—/
=—initialization_expr

3 —)
|—(—arr‘ay_spec—)J LE
=> —NULL()

Rules

initial_value

is an object name or function name. array_spec
cannot be specified for a function with an implicit
interface.

provides an initial value for the entity specified by
the immediately preceding name

initialization_expr

=> NULL()

provides an initial value, by means of an
initialization expression, for the entity specified by
the immediately preceding name

provides the initial value for the pointer object

Within the context of a derived type definition:

* If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.

* If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

* The compiler will evaluate initialization_expr within the scoping unit of the type

definition.

Statements and Attributes 267

DOUBLE COMPLEX (IBM Extension)

If => appears for a variable, the object must have the POINTER attribute.

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a function result, an object in blank common, an
integer pointer, an external name, an intrinsic name, or an automatic object. Nor
can an object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit or
if it appears in a named common block in a module.

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of

a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and initialization_expr or
NULL() is specified, the variable is initially defined. If the entity you are declaring
is a derived type component, and initialization_expr or NULL() is specified, the
derived type has default initialization. 2 becomes defined with the value
determined by initialization_expr, in accordance with the rules for intrinsic
assignment. If the entity is an array, its shape must be specified either in the type
declaration statement or in a previous specification statement in the same scoping
unit. A variable or variable subobject cannot be initialized more than once. If a is a
variable, the presence of initialization_expr or => NULL() implies that a is a saved
object, except for an object in a named common block. The initialization of an
object could affect the fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or POINTER
attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

268 XL Fortran Advanced Edition for Mac OS X: Language Reference

DOUBLE COMPLEX (IBM Extension)

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

Examples

SUBROUTINE SUB
DOUBLE COMPLEX, STATIC, DIMENSION(1) :: B
END SUBROUTINE

Related Information
» |[“Complex” on page 26|

+ [“Initialization Expressions” on page 87

* |"How Type Is Determined” on page 57) for details on the implicit typing rules

* [“Array Declarators” on page 6

« |“Automatic Objects” on page 22|

+ |“Storage Classes for Variables” on page 62|

+ [“DATA” on page 256/ for details on initial values

| End of IBM Extension

DOUBLE PRECISION

Purpose

A DOUBLE PRECISION type declaration statement specifies the attributes of
objects and functions of type double precision. Initial values can be assigned to
objects.

Syntax

»>—DOUBLE PRECISION

A\
A

entity decl _list

ii,—attr_spec_list—: =

where:

Statements and Attributes 269

DOUBLE PRECISION

attr_spec

ALLOCATABLE
AUTOMATIC
DIMENSION (array_spec)
EXTERNAL

INTENT (intent_spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

is the double colon separator. Use the double colon separator when you
specify attributes, =initialization_expr, or => NULLO[_Fe5_4.

array_spec
is a list of dimension bounds

entity_decl

[— »<
|—(—array_spec—)—| (1) J
/—initial_value_list /—

= —initialization_expr

(2)

=> —NULL()
Notes:
1 IBM Extension.
2 Fortran 95.
a is an object name or function name. array_spec cannot be specified

for a function with an implicit interface.

| IBM Extension |

initial_value
provides an initial value for the entity specified by the immediately
preceding name

| End of IBM Extension |

initialization_expr
provides an initial value, by means of an initialization expression,

270 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

DOUBLE PRECISION

for the entity specified by the immediately preceding name

| Fortran 95

=> NULL()
provides the initial value for the pointer object

| End of Fortran 95

| Fortran 95 |

Within the context of a derived type definition:

* If => appears in a component initialization, the POINTER attribute must appear
in the attr_spec_list.

* If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

* The compiler will evaluate initialization_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.

| End of Fortran 95

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a function result, an object in blank common, an
integer pointer, an external name, an intrinsic name, or an automatic object. Nor
can an object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit

or if it appears in a named common block in a module.

| Fortran 95 |

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

| End of Fortran 95 |

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of

a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

Statements and Attributes 271

DOUBLE PRECISION

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

| Fortran 95

initialization_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and initialization_expr or
NULLJ() is specified, the variable is initially defined. If the entity you are declaring
is a derived type component, and initialization_expr or NULL() is specified, the
derived type has default initialization. 2 becomes defined with the value
determined by initialization_expr, in accordance with the rules for intrinsic
assignment. If the entity is an array, its shape must be specified either in the type
declaration statement or in a previous specification statement in the same scoping
unit. A variable or variable subobject cannot be initialized more than once. If a is a
variable, the presence of initialization_expr or => NULL() implies that a is a saved
object, except for an object in a named common block. The initialization of an
object could affect the fundamental storage class of an object.

| End of Fortran 95

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the POINTER attribute must have an
explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

| IBM Extension

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

| End of IBM Extension

Examples

DOUBLE PRECISION, POINTER :: PTR
DOUBLE PRECISION, TARGET :: TAR

Related Information
+ [“Real” on page 24|

+ |“Initialization Expressions” on page 87

* |“How Type Is Determined” on page 57| for details on the implicit typing rules

* |“Array Declarators” on page 67

* [“Automatic Objects” on page 22|

* |“Storage Classes for Variables” on page 62|

+ ['DATA” on page 256/ for details on initial values

272 XL Fortran Advanced Edition for Mac OS X: Language Reference

ELSE

ELSE

Purpose

The ELSE statement is the first statement of the optional ELSE block within an IF
construct.

Syntax

»»—FE|SE

\4
A

|—I F_construc t_name—|

IF _construct_name
is a name that identifies the IF construct

Syntax

Control branches to the ELSE block if every previous logical expression in the IF
construct evaluates as false. The statement block of the ELSE block is executed and
the IF construct is complete.

If you specify an IF_construct_name, it must be the same name that you specified in
the block IF statement.

Examples

IF (A.GT.0) THEN
B = B-A

ELSE I the next statement is executed if a<=0
B = B+A

END IF

Related Information
« |“IF Construct” on page 117
+ [“END (Construct)” on page 277,|for details on the END IF statement

- FELSE]

ELSE IF

Purpose

The ELSE IF statement is the first statement of an optional ELSE IF block within
an IF construct.

Syntax

»»>—ELSE IF—(—scalar_logical_expr—)—THEN B 5 >
IF_construct_name

Statements and Attributes 273

ELSE IF

Rules

IF _construct_name
is a name that identifies the IF construct

scalar_logical_expr is evaluated if no previous logical expressions in the IF construct
are evaluated as true. If scalar_logical_expr is true, the statement block that follows
is executed and the IF construct is complete.

If you specify an IF_construct_name, it must be the same name that you specified in
the block IF statement.

Examples

IF (I.EQ.1) THEN
J=J-1

ELSE IF (I.EQ.2) THEN
J=J-2

ELSE IF (I.EQ.3) THEN
J=J-3

ELSE
J=J-4

END IF

Related Information

+ |“IE Construct” on page 117]
+ [“END (Construct)” on page 277, for details on the END IF statement

* [“ELSE” on page 273

ELSEWHERE
Pu rpose
The ELSEWHERE statement is the first statement of the optional ELSEWHERE or
masked ELSEWHERE block within a WHERE construct.
Syntax
»>—EL SEWHERE >«
| w || (2)
(—mask_expr) where_construct_name
Notes:
1 Fortran 95.
2 Fortran 95.
| Fortran 95
mask_expr is a logical array expression

| End of Fortran 95

| Fortran 95

274 XL Fortran Advanced Edition for Mac OS X: Language Reference

ELSEWHERE

where_construct_name
is a name that identifies a WHERE construct

| End of Fortran 95

Rules

| Fortran 95 |

A masked ELSEWHERE statement contains a mask_expr. See|”“Interpreting Masked|
|Array Assignments” on page 106|for information on interpreting mask expressions.
Each mask_expr in a WHERE construct must have the same shape.

If you specify a where_construct_name, it must be the same name that you specified
on the WHERE construct statement.

| End of Fortran 95 |

ELSEWHERE and masked ELSEWHERE statements must not be branch target
statements.

Examples

The following example shows a program that uses a simple masked ELSEWHERE
statement to change the data in an array:

INTEGER ARR1(3, 3), ARR2(3,3), FLAG(3, 3)

ARR1 = RESHAPE((/(I, I=1, 9)/), (/3, 3 /))
ARR2 = RESHAPE((/(I, I=9, 1, -1 /), (/3, 3 /))
FLAG = -99

Data in arrays ARRl, ARR2, and FLAG at this point:

!
!
! ARR1 = 1 4
!
!

7 ARR2 = 9 6 3 FLAG = | -99 -99 -99
2 5 8 8 5 2 -99 -99 -99
3 6 9 7 4 1 -99 -99 -99
WHERE (ARR1 > ARR2)
FLAG = 1
ELSEWHERE (ARR1 == ARR2)
FLAG = 0
ELSEWHERE
FLAG = -1
END WHERE
! Data in arrays ARR1, ARR2, and FLAG at this point:
|
I ARR1 = 1 4 7 ARR2 = 9 6 3 FLAG = | -1 -1 1
! 2 5 8 8§ 5 2 -1 0 1
! 3 6 9 7 4 1 -1 1 1

Related Information

“WHERE Construct” on page 104

* [“"WHERE” on page 390|

* |"END (Construct)” on page 277, for details on the END WHERE statement

Statements and Attributes 275

END

END
Purpose
An END statement indicates the end of a program unit or procedure.
Syntax
»>—END .
—BLOCK DATA |_ _|
BLOCK_DATA_name
—FUNCTION |_ _|
FUNCTION_name
—MODULE _|
|—MODULE_name
—PROGRAM |_ J
PROGRAM_name
—SUBROUTINE |_ _|
SUBROUTINE_name
Rules

The END statement is the only required statement in a program unit.

For an internal subprogram or module subprogram, you must specify the
FUNCTION or SUBROUTINE keyword on the END statement. For block data
program units, external subprograms, the main program, modules and interface
bodies, the corresponding keyword is optional.

The program name can be included in the END PROGRAM statement only if the
optional PROGRAM statement is used and if the name is identical to the program
name specified in the PROGRAM statement.

The block data name can be included in the END BLOCK DATA statement only if
it is provided in the BLOCK DATA statement and if the name is identical to the
block data name specified in the BLOCK DATA statement.

If a name is specified in an END MODULE, END FUNCTION, or END
SUBROUTINE statement, it must be identical to the name specified in the
corresponding MODULE, FUNCTION, or SUBROUTINE statement, respectively.

The END, END FUNCTION, END PROGRAM, and END SUBROUTINE
statements are executable statements that can be branched to. In both fixed source
form and Fortran 90 free source form formats, no other statement may follow the
END statement on the same line. In fixed source form format, you cannot continue
a program unit END statement, nor can a statement whose initial line appears to
be a program unit END statement be continued.

The END statement of a main program terminates execution of the program. The
END statement of a function or subroutine has the same effect as a[RETUR

statement. An inline comment can appear on the same line as an END statement.
Any comment line appearing after an END statement belongs to the next program
unit.

276 XL Fortran Advanced Edition for Mac OS X: Language Reference

END

Examples

PROGRAM TEST
CALL SUB()
CONTAINS

SUBROUTINE SUB

END SUBROUTINE I Reference to subroutine name SUB is optional
END PROGRAM TEST

Related Information

“Program Units and Procedures” on page 127|

END (Construct)

Purpose

The END DO, END IF, END SELECT, and END WHERE statements terminate
DO (or DO WHILE), IF, CASE, and WHERE constructs, respectively.

| Fortran 95 |

The END FORALL statement terminates FORALL constructs.
| End of Fortran 95 |

Syntax
»——END DO |_ _| >
DO_construct_name
(1)
—END FORALL |_ J
FORALL_construct_name
—END IF |_ _|
IF_construct_name
—END SELECT |_ _|
CASE_construct_name
(2)
—END WHERE |_ _|
where_construct_name
Notes:
1 Fortran 95.
2 Fortran 95.

DO_construct_name
is a name that identifies a DO or DO WHILE construct

| Fortran 95

Statements and Attributes 277

END (Construct)

FORALL_construct_name
is a name that identifies a FORALL construct

| End of Fortran 95

IF construct_name
is a name that identifies an IF construct

CASE_construct_name
is a name that identifies a CASE construct

| Fortran 95

where_construct_name
is a name that identifies a WHERE construct

| End of Fortran 95

Rules

If you label the END DO statement, you can use it as the terminal statement of a
labeled or unlabeled DO or DO WHILE construct. An END DO statement
terminates the innermost DO or DO WHILE construct only. If a DO or DO
WHILE statement does not specify a statement label, the terminal statement of the
DO or DO WHILE construct must be an END DO statement.

You can branch to an END DO, END IF, or END SELECT statement from within
the DO (or DO WHILE), IF, or CASE construct, respectively. An END IF
statement can also be branched to from outside of the IF construct.

| Fortran 95 |

In Fortran 95, an END IF statement cannot be branched to from outside of the IF
construct.

| End of Fortran 95 |

If you specify a construct name on the statement that begins the construct, the
END statement that terminates the construct must have the same construct name.
Conversely, if you do not specify a construct name on the statement that begins the
construct, you must not specify a construct name on the END statement.

An END WHERE statement must not be a branch target statement.

Examples

INTEGER X(100,100)
DECR: DO WHILE (I.GT.0)

IF (J.LT.K) THEN

END IF I Cannot reference a construct name

I=I-1
END DO DECR I Reference to construct name DECR mandatory
END

278 XL Fortran Advanced Edition for Mac OS X: Language Reference

END (Construct)

The following example shows an invalid use of the where_construct_name:
BW: WHERE (A /= 0)

B=B+1
END WHERE EW ! The where_construct_name on the END WHERE statement
! does not match the where_construct_name on the WHERE
! statement.

Related Information

[“Control Structures” on page 117

+ ["DO” on page 263

* |"FORALL” on page 289|

» [“FORALL (Construct)” on page 292|
» [“IF (Block)” on page 304

» [“SELECT CASE” on page 366|

* ["WHERE” on page 390|

[“Deleted Features” on page 606|

END INTERFACE

Purpose
The END INTERFACE statement terminates a procedure interface block.

Syntax

»—END INTERFACE ><
(1)

Lgeneri c_spec

Notes:
1 Fortran 95.

| Fortran 95

generic_spec

»>> generic_name ><
EOPERATOR—(—defined_operator—)—
ASSIGNMENT—(— = —)————

| End of Fortran 95 |

| Fortran 95 |

defined_operator
is a defined unary operator, defined binary operator, or extended intrinsic

Statements and Attributes 279

END INTERFACE

operator
| End of Fortran 95
Rules
Each INTERFACE statement must have a corresponding END INTERFACE
statement.

An END INTERFACE statement without a generic_spec can match any
INTERFACE statement, with or without a generic_spec.

| Fortran 95

If the generic_spec in an END INTERFACE statement is a generic_name, the
generic_spec of the corresponding INTERFACE statement must be the same
generic_name.

If the generic_spec in an END INTERFACE statement is an
OPERATOR(defined_operator), the generic_spec of the corresponding INTERFACE
statement must be the same OPERATOR(defined_operator).

If the generic_spec in an END INTERFACE statement is an ASSIGNMENT(=), the
generic_spec for the corresponding INTERFACE statement must be the same
ASSIGNMENT(=).

| End of Fortran 95

Examples

INTERFACE OPERATOR (.DETERMINANT.)
FUNCTION DETERMINANT (X)
INTENT(IN) X
REAL X(50,50), DETERMINANT
END FUNCTION
END INTERFACE

Fortran 95

INTERFACE OPERATOR(.INVERSE.)
FUNCTION INVERSE(Y)
INTENT(IN) Y
REAL Y(50,50), INVERSE
END FUNCTION
END INTERFACE OPERATOR(.INVERSE.)

| End of Fortran 95

Related Information

“INTERFACE” on page 320|
“Interface Concepts” on page 136|

END TYPE

Purpose
The END TYPE statement indicates the completion of a derived-type definition.

280 XL Fortran Advanced Edition for Mac OS X: Language Reference

END TYPE

Syntax

»»—END TYPE ><
l—t ype_name—|

Rules

If type_name is specified, it must match the type_name in the corresponding
ll"vpe statement.|

If a label is specified on the END TYPE statement, the label belongs to the scoping
unit of the derived-type definition.

Examples

TYPE A
INTEGER :: B
REAL :: C

END TYPE A

Related Information
* |"Derived Types” on page 33|

ENDFILE

Purpose

The ENDFILE statement writes an endfile record as the next record of an external
file connected for sequential access. This record becomes the last record in the file.

An ENDFILE statement for a file connected for stream access causes the terminal
point to become the current file position. File storage units before the current
position are considered written, and can be read. You can write additional data to
the file by using subsequent stream output statements.

Syntax

»»>—ENDFILE U
I—(—position_list—)J

u is an external unit identifier. The value of # must not be an asterisk or a
Hollerith constant.

position_list
is a list that must contain one unit specifier ((UNIT=]u) and can also
contain one of each of the other valid specifiers:

[UNIT=] u
is a unit specifier in which # must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file
that is represented by a scalar integer expression, whose value is in the

Statements and Attributes 281

ENDFILE

range 1 through 2147483647. If the optional characters UNIT= are omitted,
u must be the first item in position_list.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is a scalar variable of type INTEGER(4) or
default integer. When the ENDFILE statement finishes executing, ios is
defined with:
* A zero value if no error condition occurs

¢ A positive value if an error occurs.
ERR= stmt_label
is an error specifier that specifies the statement label of an executable

statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

Rules

| IBM Extension |

If the unit is not connected, an implicit OPEN specifying sequential access is
performed to a default file named fort.n, where n is the value of u with leading
zeros removed.

If two ENDFILE statements are executed for the same file without an intervening
REWIND or BACKSPACE statement, the second ENDFILE statement is ignored.

| End of IBM Extension |

After execution of an ENDFILE statement for a file connected for sequential access,
a BACKSPACE or REWIND statement must be used to reposition the file prior to
execution of any data transfer input/output statement.

If the ERR= and IOSTAT= specifiers are set and an error is encountered, transfer is
made to the statement specified by the ERR= specifier and a positive integer value
is assigned to ios.

| IBM Extension |

If IOSTAT= and ERR= are not specified,
* The program stops if a severe error is encountered.

* The program continues to the next statement if a recoverable error is
encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

| End of IBM Extension |

Examples

ENDFILE 12
ENDFILE (IOSTAT=IO0SS,UNIT=11)

Related Information
+ [“Conditions and IOSTAT Values” on page 181|
+ [“Understanding XL Fortran Input/Output” on page 173}

282 XL Fortran Advanced Edition for Mac OS X: Language Reference

ENDFILE

o |Setting Run-time Options|in the

ENTRY

Purpose

A function subprogram or subroutine subprogram has a primary entry point that is
established through the SUBROUTINEH or [FUNCTION]| statement. The ENTRY
statement establishes an alternate entry point for an external subprogram or a
module subprogram.

Syntax

Rules

»>—ENTRY—entry_name >

” |_() | ‘
LRESULT—(—resuZ t_name—)—|

|—dummy_ar'gumen t lis t—l

entry_name
is the name of an entry point in a function subprogram or subroutine
subprogram

The ENTRY statement cannot appear in a main program, [block data program unit}
internal subprogram, IF construct, DO construct, CASE construct, derived-type
definition, or interface block.

An ENTRY statement can appear anywhere after the FUNCTION or
SUBROUTINE statement (and after any USE statements) of an external or module
subprogram, except in a statement block within a control construct, in a
derived-type definition, or in an interface block. ENTRY statements are
nonexecutable and do not affect control sequencing during the execution of a
subprogram.

The result variable is result_name, if specified; otherwise, it is entry_name. If the
characteristics of the ENTRY statement’s result variable are the same as those of
the FUNCTION statement’s result variable, the result variables identify the same
variable, even though they can have different names. Otherwise, they are
storage-associated and must be all nonpointer, nonallocatable scalars of intrinsic
(noncharacter) type. result_name can be the same as the result variable name
specified for the FUNCTION statement or another ENTRY statement.

The result variable cannot be specified in a COMMON, DATA, integer POINTER,
or EQUIVALENCE statement, nor can it have the PARAMETER, INTENT,
OPTIONAL, SAVE, or VOLATILE attributes. The STATIC and AUTOMATIC
attributes can be specified only when the result variable is not an allocatable object,
an array or a pointer, and is not of character or derived type.

Statements and Attributes 283

ENTRY

If the RESULT keyword is specified, the ENTRY statement must be within a
function subprogram, entry_name must not appear in any specification statement in
the scope of the function subprogram, and result_name cannot be the same as
entry_name.

A result variable must not be initialized in a type declaration statement or DATA
statement.

The entry name in an external subprogram is a global entity; an entry name in a
module subprogram is not a global entity. An interface for an entry can appear in
an interface block only when the entry name is used as the procedure name in an
interface body.

In a function subprogram, entry_name identifies a function and can be referenced as
a function from the calling procedure. In a subroutine subprogram, entry_name
identifies a subroutine and can be referenced as a subroutine from the calling
procedure. When the reference is made, execution begins with the first executable
statement following the ENTRY statement.

The result variable must be defined prior to exiting from the function, when the
function is invoked through that entry.

A name in the dummy_arqument_list must not appear in the following places:

* In an executable statement preceding the ENTRY statement unless it also
appears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes
the executable statement.

* In the expression of a statement function statement, unless the name is also a
dummy argument of the statement function, appears in a FUNCTION or
SUBROUTINE statement, or appears in an ENTRY statement that precedes the
statement function statement.

The order, number, type, and kind type parameters of the dummy arguments can
differ from those of the FUNCTION or SUBROUTINE statement, or other ENTRY
statements.

If a dummy argument is used in a specification expression to specify an array
bound or character length of an object, you can only specify the object in a
statement that is executed during a procedure reference if the dummy argument is
present and appears in the dummy argument list of the procedure name
referenced.

Recursion

An ENTRY statement can reference itself directly only if the subprogram statement
specifies RECURSIVE and the ENTRY statement specifies RESULT. The entry
procedure then has an explicit interface within the subprogram. The RESULT
clause is not required for an entry to reference itself indirectly.

| Fortran 95 |

Elemental subprograms can have ENTRY statements, but the ENTRY statement
cannot have the ELEMENTAL prefix. The procedure defined by the ENTRY
statement is elemental if the ELEMENTAL prefix is specified in the SUBROUTINE
or FUNCTION statement.

| End of Fortran 95 |

284 XL Fortran Advanced Edition for Mac OS X: Language Reference

ENTRY

If entry_name is of type character, its length cannot be an asterisk if the function is
recursive.

| IBM Extension

You can also call external procedures recursively when you specify the -qrecur
compiler option, although XL Fortran disregards this option if a procedure
specifies either the RECURSIVE or RESULT keyword.

| End of IBM Extension

Examples
RECURSIVE FUNCTION FNC() RESULT (RES)

ENTRY ENT () RESULT (RES) I The result variable name can be
I the same as for the function

END FUNCTION

Related Information
* [“FUNCTION” on page 298|
+ [“SUBROUTINE” on page 372
+ |[“Recursion” on page 166]
¢ [“Dummy Arguments” on page 155|
+ |-grecur Option|in the [User’s Guide|

EQUIVALENCE

Purpose

The EQUIVALENCE statement specifies that two or more objects in a scoping unit
are to share the same storage.

Syntax

B

»»—EQUIVALENCE—"—(—equiv_object—,—equiv_object_list—) >

equiv_object
is a variable name, array element, or substring. Any subscript or substring
expression must be an integer initialization expression.

Rules

equiv_object must not be a target, pointer, dummy argument, function name,
pointee, entry name, result name, structure component, named constant, automatic
data object, allocatable object, object of nonsequence derived type, object of
sequence derived type that contains a pointer or allocatable component, or a
subobject of any of these.

Statements and Attributes 285

EQUIVALENCE

Because all items named within a pair of parentheses have the same first storage
unit, they become associated. This is called equivalence association. It may cause the
association of other items as well.

You can specify default initialization for a storage unit that is storage associated.
However, the objects or subobjects supplying the default initialization must be of
the same type. They must also be of the same type parameters and supply the
same value for the storage unit.

If you specify an array element in an EQUIVALENCE statement, the number of
subscript quantities cannot exceed the number of dimensions in the array. If you
specify a multidimensional array using an array element with a single subscript #,
the n element in the array’s storage sequence is specified. In all other cases, XL
Fortran replaces any missing subscript with the lower bound of the corresponding
dimension of the array. A nonzero-sized array without a subscript refers to the first
element of the array.

If equiv_object is of derived type, it must be of a sequence derived type.

| IBM Extension

You can equivalence an object of sequence derived type with any other object of
sequence derived type or intrinsic data type provided that the object is allowed in
an EQUIVALENCE statement.

In XL Fortran, associated items can be of any intrinsic type or of sequence derived
type. If they are, the EQUIVALENCE statement does not cause type conversion.

| End of IBM Extension

The lengths of associated items do not have to be equal.

Any zero-sized items are storage-associated with one another and with the first
storage unit of any nonzero-sized sequences.

An EQUIVALENCE statement cannot associate the storage sequences of two
different common blocks. It must not specify that the same storage unit is to occur
more than once in a storage sequence. An EQUIVALENCE statement must not
contradict itself or any previously established associations caused by an
EQUIVALENCE statement.

You can cause names not in common blocks to share storage with a name in a
common block using the EQUIVALENCE statement.

If you specify that an object declared by an EQUIVALENCE group has the
PROTECTED attribute, all objects specified in that EQUIVALENCE group must
have the PROTECTED attribute.

You can extend a common block by using an EQUIVALENCE statement, but only
by adding beyond the last entry, not before the first entry. For example, if the
variable that you associate to a variable in a common block, using the
EQUIVALENCE statement, is an element of an array, the implicit association of the
rest of the elements of the array can extend the size of the common block.

286 XL Fortran Advanced Edition for Mac OS X: Language Reference

EQUIVALENCE

Examples

DOUBLE PRECISION A(3)
REAL B(5)
EQUIVALENCE (A,B(3))

Association of storage units:

| |
Array A:
Array B: | B(1) | B(2)

|
A(2) A(3)
B(5) |

|
(1)
|

A
B(3) | B(4)

This example shows how association of two items can result in further association.

AUTOMATIC A
CHARACTER A*4,Bx4,C(2)*3
EQUIVALENCE (A,C(1)),(B,C(2))

Association of storage units:

Variable A: A
Variable B: B |
Array C: | c(1) c(2) |

Because XL Fortran associates both A and B with C, A and B become associated with
each other, and they all have the automatic storage class.

INTEGER(4)
G(2,-1:2,-3:2)
REAL(4) H(3,1:3,2:3)

EQUIVALENCE (G(2),H(1,1)) ! G(2) is G(2,-1,-3)
! H(1,1) is H(1,1,2)

Related Information

* |“Storage Classes for Variables” on page 62

+ |“Definition Status of Variables” on page 57|

EXIT

Pur pose
The EXIT statement terminates execution of a Construct or [DO WHIL

construct before the construct completes all of its iterations.

Syntax

»»—EXIT ><

|—DO_cons truct n ame—|

DO_construct_name
is the name of the DO or DO WHILE construct

Rules

The EXIT statement is placed within a DO or DO WHILE construct and belongs
to the DO or DO WHILE construct specified by DO_construct_name oz, if not

Statements and Attributes 287

EXIT

specified, by the DO or DO WHILE construct that immediately surrounds it.
When a DO_construct_name is specified, the EXIT statement must be in the range
of that construct.

When the EXIT statement is executed, the DO or DO WHILE construct that the
EXIT statement belongs to becomes inactive. If the EXIT statement is nested in any
other DO or DO WHILE constructs, they also become inactive. Any DO variable
present retains its last defined value. If the DO construct has no construct control,
it will iterate infinitely unless it becomes inactive. The EXIT statement can be used
to make the construct inactive.

An EXIT statement can have a statement label; it cannot be used as the labeled
statement that terminates a DO or DO WHILE construct.

Examples
LOOP1: DO I =1, 20
N=N+1
10 IF (N > NMAX) EXIT LOOP1 I EXIT from LOOP1

LOOP2: DO WHILE (K==1)
KMAX = KMAX - 1
20 IF (K > KMAX) EXIT I EXIT from LOOP2
END DO LOOP2

LOOP3: DO J =1, 10

N=N+1
30 IF (N > NMAX) EXIT LOOP1 ! EXIT from LOOP1
EXIT LOOP3 ! EXIT from LOOP3

END DO LOOP3

END DO LOOP1

Related Information
+ |"DO Construct” on page 121|
+ |“"DO WHILE Construct” on page 125

EXTERNAL

Purpose

The EXTERNAL attribute specifies that a name represents an external procedure, a
dummy procedure, or a block data program unit. A procedure name with the
EXTERNAL attribute can be used as an actual argument.

Syntax

»—EXTERNAL—L—_I—name_Z ist <

name is the name of an external procedure, dummy procedure, or BLOCK
DATA program unit

288 XL Fortran Advanced Edition for Mac OS X: Language Reference

EXTERNAL

Rules

If an external procedure name or dummy argument name is used as an actual
argument, it must be declared with the EXTERNAL attribute or by an interface
block in the scoping unit, but may not appear in both.

If an intrinsic procedure name is specified with the EXTERNAL attribute in a
scoping unit, the name becomes the name of a user-defined external procedure.
Therefore, you cannot invoke that intrinsic procedure by that name from that
scoping unit.

You can specify a name to have the EXTERNAL attribute appear only once in a
scoping unit.

A name in an EXTERNAL statement must not also be specified as a specific
procedure name in an interface block in the scoping unit.

Attributes Compatible with the EXTERNAL Attribute

+ [OPTIONAL] + PRIVATH + [PuBLI]

Examples

PROGRAM MAIN

EXTERNAL AAA

CALL SUB(AAA) ! Procedure AAA is passed to SUB
END

SUBROUTINE SUB(ARG)

CALL ARG() ! This results in a call to AAA
END SUBROUTINE

Related Information

¢ [“Procedures as Dummy Arguments” on page 163|

+ Item 4 under [Appendix A, “Compatibility Across Standards,” on page 603

FORALL

| Fortran 95 |

Purpose

The FORALL statement performs assignment to groups of subobjects, especially
array elements. Unlike the WHERE statement, assignment can be performed on an
elemental level rather than on an array level. The FORALL statement also allows
pointer assignment.

Syntax

A\
A

»>—FORALL—forall_header—jforall_assignment

Statements and Attributes 289

FORALL (Fortran 95)

forall_header

»»>—(—forall_triplet_spec_list

>
<

I— ,—scalar_mask_exp r—l

forall_triplet_spec

»>—index_name— = —subscript— : —subscript |_ _| ><
: —stride

forall_assignment
is either assignment_statement or pointer_assignment_statement

scalar_mask_expr
is a scalar logical expression

subscript, stride
are each scalar integer expressions

Rules

Only pure procedures can be referenced in the mask expression of forall_header and
in a forall_assignment (including one referenced by a defined operation or
assignment).

index_name must be a scalar integer variable. It is also a statement entity; that is, it
does not affect and is not affected by other entities in the scoping unit.

In forall_triplet_spec_list, neither a subscript nor a stride can contain a reference to
any index_name in the forall_triplet_spec_list. Evaluation of any expression in
forall_header must not affect evaluation of any other expression in forall_header.

Given the forall_triplet_spec
indexl = s1:s2:s3

the maximum number of index values is determined by:
max = INT((s2-s1+s3)/s3)

If the stride (s3 above) is not specified, a value of 1 is assumed. If max = 0 for any
index, forall_assignment is not executed. For example,
indexl = 2:10:3 ! The index values are 2,5,8.
max = INT((10-2+3)/3) = 3.

index2
index2

6:2:-1 ! The index values are 6,5,4,3,2.
6:2 I No index values.

If the mask expression is omitted, a value of .TRUE. is assumed.

No atomic object can be assigned to more than once. Assignment to a nonatomic
object assigns to all subobjects or associates targets with all subobjects.

290 XL Fortran Advanced Edition for Mac OS X: Language Reference

FORALL (Fortran 95)

Interpreting the FORALL Statement

1. Evaluate the subscript and stride expressions for each forall_triplet_spec in any

order. All possible pairings of index_name values form the set of combinations.
For example, given the following statement:

FORALL (I=1:3,Jd=4:5) A(I,J) = A(J,I)

The set of combinations of I and J is:
{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}

The -1 and -qnozerosize compiler options do not affect this step.

Evaluate the scalar_mask_expr for the set of combinations, in any order,
producing a set of active combinations (those for which scalar_mask_expr
evaluated to .TRUE.). For example, if the mask (I+J.NE.6) is applied to the
above set, the set of active combinations is:

{(1,4),(2,5),(3,4),(3,5)}
For assignment_statement, evaluate, in any order, all values in the right-hand

side expression and all subscripts, strides, and substring bounds in the left-hand
side wvariable for all active combinations of index_name values.

For pointer_assignment, determine, in any order, what will be the targets of the
pointer assignment and evaluate all subscripts, strides, and substring bounds in
the pointer for all active combinations of index_name values. Whether or not the
target is a pointer, the determination of the target does not include evaluation
of its value.

For assignment_statement, assign, in any order, the computed expression values to
the corresponding variable entities for all active combinations of index_name
values.

For pointer_assignment, associate, in any order, all targets with the
corresponding pointer entities for all active combinations of index_name values.

Examples

INTEGER A(1000,1000), B(200)

=17

FORALL (I=1:1000,J=1:1000,I.NE.J) A(I,J)=A(J,I)
PRINT *, I I The value 17 is printed because the I

I in the FORALL has statement scope.

FORALL (N=1:200:2) B(N)=B(N+1)
END

Related Information

* |“Intrinsic Assignment” on page 101|

“Pointer Assignment” on page 113|

“FORALL Construct” on page 110|

“INDEPENDENT” on page 406]

“Statement and Construct Entities” on page 13(}

End of Fortran 95

Statements and Attributes 291

FORALL - Construct

FORALL (Construct)

| Fortran 95

Purpose

The FORALL (Construct) statement is the first statement of the FORALL construct.

Syntax

»»>—(—forall_triplet_spec_list

FORALL

[N

I—FORALL_construct_name— : —| I—for‘all_header—|

forall_header

)

Y
A

L ,—scalar_mask_exp r—l

forall_triplet_spec

»>—index_name— = —subscript— : —subscript |_ ><

Rules

: —stride—l

scalar_mask_expr
is a scalar logical expression

subscript, stride
are both scalar integer expressions

Any procedures that are referenced in the mask expression of forall_header
(including one referenced by a defined operation or assignment) must be pure.

The index_name must be a scalar integer variable. The scope of index_name is the
whole FORALL construct.

In forall_triplet_spec_list, neither a subscript nor a stride can contain a reference to
any index_name in the forall_triplet_spec_list. Evaluation of any expression in
forall_header must not affect evaluation of any other expression in forall_header.

Given the following forall_triplet_spec:
indexl = s1:52:53

The maximum number of index values is determined by:
max = INT((s2-s1+s3)/s3)

If the stride (s3 above) is not specified, a value of 1 is assumed. If max = 0 for any
index, forall_assignment is not executed. For example:

292 XL Fortran Advanced Edition for Mac OS X: Language Reference

FORALL - Construct

indexl = 2:10:3 ! The index values are 2,5,8.

I max = floor(((10-2)/3)+1) = 3.
index2 = 6:2:-1 ! The index values are 6,5,4,3,2.
index2 = 6:2 I No index values.

If the mask expression is omitted, a value of .TRUE. is assumed.

Examples

POSITIVE: FORALL (X=1:100,A(X)>0)
I(X)=I(X)+J(X)
J(X)=J(X)-I(X+1)

END FORALL POSITIVE

Related Information

* ["END (Construct)” on page 277
+ [“FORALL Construct” on page 110|
+ |“Statement and Construct Entities” on page 13(]

| End of Fortran 95

FORMAT
Purpose
The FORMAT statement provides format specifications for input/output
statements.
Syntax
»>—FORMAT—() ><

|—format_i tem 1 z'stJ

format_item

»——L—_I—data_edi t_desc
r

—control_edit_desc

—L—_I—(—format_i tem list—)—
r

—char_string_edit_desc

v
A

r is an unsigned, positive, integer literal constant that cannot specify
a kind type parameter, or it is a scalar integer expression enclosed
by angle brackets (< and >). It is called a repeat specification. It
specifies the number of times to repeat the format_item_list or the
data_edit_desc. The default is 1.

data_edit_desc
is a data edit descriptor

Statements and Attributes 293

FORMAT

control_edit_desc
is a control edit descriptor

char_string_edit_desc
is a character string edit descriptor

Data Edit Descriptors

Forms Use Page

A Edits character values 191

Aw

Bw Edits binary values 191

Bw.m

Ew.d Edits real and complex numbers with exponents 193]

Ew.dEe

Ew.dDe *

Ew.dQe *

Dw.d

ENw.d

ENw.dEe

ESw.d

ESw.dEe

Quw.d *

Fuw.d Edits real and complex numbers without exponents 197

Guw.d Edits data fields of any intrinsic type, with the output 198]

Guw.dEe format adapting to the type of the data and, if the data is

Gw.dDe * of type real, the magnitude of the data

Gw.dQe *

Iw Edits integer numbers

Tw.m

Lw Edits logical values

Ow Edits octal values

Ow.m

Q* Returns the count of characters remaining in an input
record *

Zw Edits hexadecimal values 204

Zw.m

Note: * IBM Extensions

where:

w specifies the width of a field, including all blanks. It must be positive
except in Fortran 95, where it can be zero for I, B, O, Z, and F
edit descriptors on output[Fes5_4

m specifies the number of digits to be printed

d specifies the number of digits to the right of the decimal point

e specifies the number of digits in the exponent field

w, m, d, and e can be:

294 XL Fortran Advanced Edition for Mac OS X: Language Reference

* An unsigned integer literal constant

FORMAT

| IBM Extension

* A scalar integer expression enclosed by angle brackets (< and >). See

[Format Expressions” on page 297 for details.

| End of IBM Extension

You cannot specify kind parameters for w, m, d, or e.

| IBM Extension

Note:

There are two types of Q data edit descriptor (Qw.d and Q):

extended precision Q

is the Q edit descriptor whose syntax is Quw.d

character count Q

is the Q edit descriptor whose syntax is Q

| End of IBM Extension

Control Edit Descriptors

character is transferred

position in a record) from which, or to which, the next

Forms Use Page
/ Specifies the end of data transfer on the current record 205
r/
Specifies the end of format control if there are no more
items in the input/output list
$* Suppresses end-of-record in output * *
BN Ignores nonleading blanks in numeric input fields
BZ Interprets nonleading blanks in numeric input fields as
Zeros
kP Specifies a scale factor for real and complex items
S SS Specifies that plus signs are not to be written
SP Specifies that plus signs are to be written
Tc Specifies the absolute position in a record from which, or
to which, the next character is transferred
TLc Specifies the relative position (backward from the current

character is transferred

TRc Specifies the relative position (forward from the current
position in a record) from which, or to which, the next

=
=
o

character is transferred

oX Specifies the relative position (forward from the current
position in a record) from which, or to which, the next

N
=
o

Note: * IBM Extension

Statements and Attributes

295

FORMAT

where:

r is a repeat specifier. It is an unsigned, positive, integer literal constant.

k specifies the scale factor to be used. It is an optionally signed, integer
literal constant.

c specifies the character position in a record. It is an unsigned, nonzero,
integer literal constant.

0 is the relative character position in a record. It is an unsigned, nonzero,

integer literal constant.

| IBM Extension

7, k, c, and o can also be expressed as an arithmetic expression enclosed by angle
brackets (< and >) that evaluates into an integer value.

| End of IBM Extension

Kind type parameters cannot be specified for 7, k, c, or o.

Character String Edit Descriptors

Forms Use Page
nHstr Outputs a character string (str) 208
"str’ Outputs a character string (str) 207
//Str//

n is the number of characters in a literal field. It is an unsigned, positive,

integer literal constant. Blanks are included in character count. A kind type
parameter cannot be specified.

Rules

When a format identifier in a formatted READ, WRITE, or PRINT statement is a
statement label or a variable that is assigned a statement label, the statement label
identifies a FORMAT statement.

The FORMAT statement must have a statement label. FORMAT statements cannot

appear in program units, interface blocks, the scope of a module, or
derived-type definitions.

Commas separate edit descriptors. You can omit the comma between a P edit
descriptor and an F, E, EN, ES, D, G, or Q (both extended precision and character
count) edit descriptor immediately following it, before a slash edit descriptor when
the optional repeat specification is not present, after a slash edit descriptor, and
before or after a colon edit descriptor.

FORMAT specifications can also be given as character expressions in input/output
statements.

XL Fortran treats uppercase and lowercase characters in format specifications the
same, except in character string edit descriptors.

296 XL Fortran Advanced Edition for Mac OS X: Language Reference

Character Format Specification

When a format identifier (page in a formatted READ, WRITE, or PRINT

FORMAT

statement is a character array name or character expression, the value of the array

or expression is a character format specification.

If the format identifier is a character array element name, the format specification
must be completely contained within the array element. If the format identifier is a
character array name, the format specification can continue beyond the first

element into following consecutive elements.

Blanks can precede the format specification. Character data can follow the right

parenthesis that ends the format specification without affecting the format

specification.

Variable Format Expressions:

| IBM Extension

Wherever an integer constant is required by an edit descriptor, you can specify an
integer expression in a FORMAT statement. The integer expression must be
enclosed by angle brackets (< and >). You cannot use a sign outside of a variable
format expression. The following are valid format specifications:

WRITE(6,20) INT1
20 FORMAT(I<MAX(20,5)>)

WRITE(6,FMT=30) INT2, INT3
30 FORMAT (I<J+K>, I<2+M>)

The integer expression can be any valid Fortran expression, including function calls
and references to dummy arguments, with the following restrictions:
* Expressions cannot be used with the H edit descriptor

* Expressions cannot contain graphical relational operators.

The value of the expression is reevaluated each time an input/output item is
processed during the execution of the READ, WRITE, or PRINT statement.

| End of IBM Extension

Examples

CHARACTER*32 CHARVAR
CHARVAR="("'integer: ',I2,' binary: ',B8)"

M = 56
J=1
X = 2355.95843

WRITE (6,770) M,X
WRITE (6,CHARVAR) M,M

WRITE (6,880) J,M

770 FORMAT(I3, 2F10.2)
880 FORMAT(I<J+1>)
END

Related Information

* [“Input/Output Formatting” on page 187
* ["PRINT” on page 344

+ ["READ” on page 351

Character format
specification
OUTPUT:

56 2355.96
integer: 56
binary: 00111000

1
56

Statements and Attributes

297

FORMAT

* |"WRITE” on page 392|

FUNCTION
Purpose
The FUNCTION statement is the first statement of a function subprogram.
Syntax
»—T FUNCTION—name >
I—prefix—l (1) (2)
* len
»—() ><
|—dummy_argumen t lis tJ |—RESULT—(—resul t_name—)]
Notes:
1 IBM Extension.
2 IBM Extension.
prefix is one of the following:
type_spec
RECURSIVE
PURE
ELEMENTAL
type_spec
specifies the type and type parameters of the function result. See
[Declaration” on page 37§ for details about type_spec.
name is the name of the function subprogram
| IBM Extension
len is either an unsigned integer literal or a parenthesized scalar integer
initialization expression. Its value specifies the length of the function’s
result variable. It can be included only when the type is specified in the
FUNCTION statement. The type cannot be DOUBLE PRECISION,
DOUBLE COMPLEX, BYTE, or a derived type.
| End of IBM Extension
Rules

At most one of each kind of prefix can be specified.

The type and type parameters of the function result can be specified by either
type_spec or by declaring the result variable in the declaration part of the function

298 XL Fortran Advanced Edition for Mac OS X: Language Reference

FUNCTION

subprogram, but not by both. If they are not specified at all, the implicit typing
rules are in effect. A length specifier cannot be specified by both type_spec and len.

If RESULT is specified, result_name becomes the function result variable. name must
not be declared in any specification statement in the subprogram, although it can
be referenced. result_name must not be the same as name. If RESULT is not
specified, name becomes the function result variable.

If the result variable is an array or pointer, the DIMENSION or POINTER
attributes, respectively, must be specified within the function body.

If the function result is a pointer, the shape of the result variable determines the
shape of the value returned by the function. If the result variable is a pointer, the
function must either associate a target with the pointer or define the association
status of the pointer as disassociated.

If the result variable is not a pointer, the function must define its value.

If the name of an external function is of derived type, the derived type must be a
sequence derived type if the type is not use-associated or host-associated.

The function result variable must not appear within a variable format expression,
nor can it be specified in a COMMON, DATA, integer POINTER, or
EQUIVALENCE statement, nor can it have the PARAMETER, INTENT,
OPTIONAL, or SAVE attributes. The STATIC and AUTOMATIC attributes can be
specified only when the result variable is not an allocatable object, an array or a
pointer, and is not of character or derived type.

The function result variable is associated with any entry procedure result variables.
This is called entry association. The definition of any of these result variables
becomes the definition of all the associated variables having that same type, and is
the value of the function regardless of the entry point.

If the function subprogram contains entry procedures, the result variables are not
required to be of the same type unless the type is of character or derived type, or
if the variables have the ALLOCATABLE or POINTER attribute, or if they are not
scalars. The variable whose name is used to reference the function must be in a
defined state when a [RETURN]| or [END| statement is executed in the subprogram.
An associated variable of a different type must not become defined during the
execution of the function reference, unless an associated variable of the same type
redefines it later during execution of the subprogram.

Recursion
The RECURSIVE keyword must be specified if, directly or indirectly:

e The function invokes itself

* The function invokes a function defined by an ENTRY statement in the same
subprogram

* An entry procedure in the same subprogram invokes itself

* An entry procedure in the same subprogram invokes another entry procedure in
the same subprogram

* An entry procedure in the same subprogram invokes the subprogram defined by
the FUNCTION statement.

Statements and Attributes 299

FUNCTION

A function that directly invokes itself requires that both the RECURSIVE and
RESULT keywords be specified. The presence of both keywords makes the
procedure interface explicit within the subprogram.

If name is of type character, its length cannot be an asterisk if the function is
recursive.

| IBM Extension

If RECURSIVE is specified, the result variable has a default storage class of
automatic.

You can also call external procedures recursively when you specify the -qrecur
compiler option, although XL Fortran disregards this option if the FUNCTION
statement specifies either RECURSIVE or RESULT.

| End of IBM Extension

Elemental Procedures

| Fortran 95

For elemental procedures, the keyword ELEMENTAL must be specified. If the

ELEMENTAL keyword is specified, the RECURSIVE keyword cannot be specified.

| End of Fortran 95

Examples

RECURSIVE FUNCTION FACTORIAL (N) RESULT (RES)
INTEGER RES
IF (N.EQ.0) THEN
RES=1
ELSE
RES=N+FACTORIAL (N-1)
END IF
END FUNCTION FACTORIAL

PROGRAM P
INTERFACE OPERATOR (.PERMUTATION.)
ELEMENTAL FUNCTION MYPERMUTATION(ARRI1,ARR2)
INTEGER :: MYPERMUTATION
INTEGER, INTENT(IN) :: ARR1,ARR2
END FUNCTION MYPERMUTATION
END INTERFACE

INTEGER PERMVEC(100,150),N(100,150),K(100,150)
PERMVEC = N .PERMUTATION. K

END

Related Information

» |“Function and Subroutine Subprograms” on page 150
* ["ENTRY” on page 283
* |“Function Reference” on pa&Sll

* |'Dummy Arguments” on page 155|

« |“Statement Function” on page 368

+ |[“Recursion” on page 166|

300 XL Fortran Advanced Edition for Mac OS X: Language Reference

FUNCTION

* |-grecur Option|in the [User’s Guide|

¢ |"Pure Procedures” on page 167

* |“Elemental Procedures” on page 169

GO TO (Assigned)

Purpose

The assigned GO TO statement transfers program control to an executable
statement, whose statement label is designated in an ASSIGN statement.

Syntax

»>—G0 TO—variable_name _| <
LL—J—(—stmt_label_l ist—)

variable_name
is a scalar variable name of type INTEGER(4) or INTEGER(8) that you
have assigned a statement label to in an ASSIGN statement.

stmt_label
is the statement label of an executable statement in the same scoping unit
as the assigned GO TO. The same statement label can appear more than
once in stmt_label_list.

Rules

When the assigned GO TO statement is executed, the variable you specify by
variable_name with the value of a statement label must be defined. You must
establish this definition with an statement in the same scoping unit as the
assigned GO TO statement. If the integer variable is a dummy argument in a
subprogram, you must assign it a statement label in the subprogram in order to
use it in an assigned GO TO in that subprogram. Execution of the assigned GO
TO statement transfers control to the statement identified by that statement label.

If stmt_label_list is present, the statement label assigned to the variable specified by
variable_name must be one of the statement labels in the list.

The assigned GO TO cannot be the terminal statement of a [DO|or [DO WHILH
construct.

| Fortran 95 |

The assigned GO TO statement has been deleted in Fortran 95.
| End of Fortran 95 |

Examples
INTEGER RETURN_LABEL

I Simulate a call to a local procedure

Statements and Attributes 301

GO TO - Assigned

ASSIGN 100 TO RETURN_LABEL
GOTO 9000
100 CONTINUE

9000 CONTINUE
I A "local" procedure

GOTO RETURN_LABEL

Related Information
* |“Statement Labels” on page 11|

2

* [“Branching” on page 126
+ ['Deleted Features” on page 606|

GO TO (Computed)

Purpose

The computed GO TO statement transfers program control to one of possibly
several executable statements.

Syntax

v
A

»»—G0 TO—(—stmt_labeZ_Zist—)—l_—_l—arith_expr

stmt_label
is the statement label of an executable statement in the same scoping unit
as the computed GO TO. The same statement label can appear more than
once in stmt_label_list.

arith_expr

is a scalar integer expression.

| IBM Extension

It can also be real or complex. If the value of the expression is noninteger,
XL Fortran converts it to INTEGER(4) before using it.

| End of IBM Extension

Rules

When a computed GO TO statement is executed, the arith_expr is evaluated. The
resulting value is used as an index into stmt_label_list. Control then transfers to the
statement whose statement label you identify by the index. For example, if the
value of arith_expr is 4, control transfers to the statement whose statement label is
fourth in the stmt_label_list, provided there are at least four labels in the list.

302 XL Fortran Advanced Edition for Mac OS X: Language Reference

GO TO - Computed

If the value of arith_expr is less than 1 or greater than the number of statement
labels in the list, the GO TO statement has no effect (like a|CONTINUE

statement), and the next statement is executed.

Examples
INTEGER NEXT

GO TO (100,200) NEXT
10 PRINT *,'Control transfers here if NEXT does not equal 1 or 2'

100 PRINT =*,'Control transfers here if NEXT = 1'

200 PRINT =*,'Control transfers here if NEXT = 2'

Related Information

+ [“Statement Labels” on page 11|
+ [“Branching” on page 126

GO TO (Unconditional)

Purpose

The unconditional GO TO statement transfers program control to a specified
executable statement.

Syntax
»»>—G0 TO—stmt_label ><
stmt_label
is the statement label of an executable statement in the same scoping unit
as the unconditional GO TO
Rules

The unconditional GO TO statement transfers control to the statement identified
by stmt_label.

The unconditional GO TO statement cannot be the terminal statement of a @ or

DO WHILE) construct.

Examples

REAL(8) :: X,Y
GO TO 10

10 PRINT =, X,Y
END

Statements and Attributes 303

GO TO - Unconditional

Related Information

* |“Statement Labels” on page 11|
* |“Branching” on page 126

IF (Arithmetic)

Purpose

The arithmetic IF statement transfers program control to one of three executable
statements, depending on the evaluation of an arithmetic expression.

Syntax

»>—IF—(—arith_expr—)—stmt_labell—,—stmt_label2—,—stmt_label3———»<

arith_expr
is a scalar arithmetic expression of type integer or real

stmt_labell, stmt_label2, and stmt_label3
are statement labels of executable statements within the same scoping unit
as the IF statement. The same statement label can appear more than once
among the three statement labels.

Rules

The arithmetic IF statement evaluates arith_expr and transfers control to the
statement identified by stmt_labell, stmt_label2, or stmt_label3, depending on
whether the value of arith_expr is less than zero, zero, or greater than zero,
respectively.

Examples

IF (K-100) 10,20,30
10 PRINT *,'K is Tess than 100.'
GO TO 40
20 PRINT *,'K equals 100.'
GO TO 40
30 PRINT *,'K is greater than 100.'
40 CONTINUE

Related Information
+ [“Branching” on page 126
« |“Statement Labels” on page 11|

IF (Block)

Purpose

The block IF statement is the first statement in an IF construct.

Syntax

304 XL Fortran Advanced Edition for Mac OS X: Language Reference

IF - Block

>
>p

B] IF—(—scalar_logical_expr—)—THEN——>«
IF_construct_name—:

IF _construct_name
Is a name that identifies the IF construct.

Rules

The block IF statement evaluates a logical expression and executes at most one of
the blocks contained within the IF construct.

If the IF_construct_name is specified, it must appear on the END IF statement, and
optionally on any ELSE IF or ELSE statements in the IF construct.

Examples

WHICHC: IF (CMD .EQ. 'RETRY') THEN
IF (LIMIT .GT. FIVE) THEN ! Nested IF constructs

CALL STOP
ELSE
CALL RETRY
END IF
ELSE IF (CMD .EQ. 'STOP') THEN WHICHC
CALL STOP
ELSE IF (CMD .EQ. 'ABORT') THEN
CALL ABORT
ELSE WHICHC
GO TO 100
END IF WHICHC

Related Information
+ |“IF Construct” on page 117]
[“ELSE IF” on page 273|
* [“ELSE” on page 273
* [“END (Construct)” on page 277, for details on the END IF statement

IF (Logical)

Purpose

The logical IF statement evaluates a logical expression and, if true, executes a
specified statement.

Syntax

»»>—IF—(—logical_expr—)—stmt ><

logical_expr
is a scalar logical expression

Statements and Attributes 305

IF - Logical

stmt is an unlabeled executable statement

Rules
When a logical IF statement is executed, the logical_expr is evaluated. If the value

of logical_expr is true, stmt is executed. If the value of logical expr is false, stmt does
not execute and the IF statement has no effect (like a CONTINUE statement).
Execution of a function reference in logical_expr can change the values of variables
that appear in stmt.

stmt cannot be a SELECT CASE, CASE, END SELECT, DO, DO WHILE, END
DO, block IF, ELSE IF, ELSE, END IF, END FORALL, another logical IF,
ELSEWHERE, END WHERE, END, END FUNCTION, END SUBROUTINE
statement, FORALL construct statement or WHERE construct statement.

Examples
IF (ERR.NE.O) CALL ERROR(ERR)

Related Information
[‘Control Structures” on page 117

IMPLICIT
Purpose
The IMPLICIT statement changes or confirms the default implicit typing or the
default storage class for local entities or, with the form IMPLICIT NONE specified,
voids the implicit type rules altogether.
Syntax
»>—IMPLICIT——NONE ><
Y _—type_spec —(—r‘ange_list—)»\J
(1)
STATIC
(2)
AUTOMATIC
(3)
UNDEFINED
Notes:
1 IBM Extension.
2 IBM Extension.
3 IBM Extension.

type_spec
specifies a data type. See ["Type Declaration” on page 378

range is either a single letter or range of letters. A range of letters has the form
letter-letter,, where letter; is the first letter in the range and letter,, which

306 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

IMPLICIT

follows letter; alphabetically, is the last letter in the range. Dollar sign ($)
and underscore (_) are also permitted in a range. The underscore (_)
follows the dollar sign ($), which follows the Z. Thus, the range Y - _ is the
sameas Y, Z §, .

Letter ranges cannot overlap; that is, no more than one type can be specified for a
given letter.

In a given scoping unit, if a character has not been specified in an IMPLICIT
statement, the implicit type for entities in a program unit or interface body is
default integer for entities that begin with the characters I-N, and default real
otherwise. The default for an internal or module procedure is the same as the
implicit type used by the host scoping unit.

For any data entity name that begins with the character specified by range_list, and
for which you do not explicitly specify a type, the type specified by the
immediately preceding type_spec is provided. Note that implicit typing can be to a
derived type that is inaccessible in the local scope if the derived type is accessible
to the host scope.

| IBM Extension |

A character or a range of characters that you specify as STATIC or AUTOMATIC
can also appear in an IMPLICIT statement for any data type. A letter in a
range_list cannot have both type_spec and UNDEFINED specified for it in the
scoping unit. Neither can both STATIC and AUTOMATIC be specified for the
same letter.

| End of IBM Extension |

If you specify the form IMPLICIT NONE in a scoping unit, you must use type
declaration statements to specify data types for names local to that scoping unit.
You cannot refer to a name that does not have an explicitly defined data type; this
lets you control all names that are inadvertently referenced. When IMPLICIT
NONE is specified, you cannot specify any other IMPLICIT statement in the same
scoping unit, except ones that contain STATIC or AUTOMATIC. You can compile
your program with the -qundef compiler option to achieve the same effect as an
IMPLICIT NONE statement appearing in each scoping unit where an IMPLICIT
statement is allowed.

| IBM Extension |

IMPLICIT UNDEFINED turns off the implicit data typing defaults for the
character or range of characters specified. When you specify IMPLICIT
UNDEFINED, you must declare the data types of all symbolic names in the
scoping unit that start with a specified character. The compiler issues a diagnostic
message for each symbolic name local to the scoping unit that does not have an
explicitly defined data type.

| End of IBM Extension |

Statements and Attributes 307

IMPLICIT

An IMPLICIT statement does not change the data type of an intrinsic function.

| IBM Extension

Using the -qsave/-qnosave compiler option modifies the predefined conventions
for storage class:

-qsave compiler option makes the predefined IMPLICIT STATIC(a - _)
convention

-qnosave compiler option |makes the predefined IMPLICIT AUTOMATIC(a - _)
convention

Even if you specified the -qmixed compiler option, the range list items are not case
sensitive. For example, with -qmixed specified, IMPLICIT INTEGER(A) affects the
implicit typing of data objects that begin with A as well as those that begin with a.

| End of IBM Extension |

Examples

IMPLICIT INTEGER (B), COMPLEX (D, K-M), REAL (R-Z,A)
This IMPLICIT statement establishes the following
implicit typing:

real
integer
real
complex
real
integer
complex
integer
real
real
: real

-

— —
-
ANZ=ZCCIT OO >

!
!
!
!
!
!
!
!
!
!
!
! 0 to
!

!

Related Information
* [“How Type Is Determined” on page 57 for a discussion of the implicit rules
« |“Storage Classes for Variables” on page 62|

* |-qundef Option|in the |User’s Guide|

* |-qsave OEtiog] in the |User's Guide|

INQUIRE

Purpose

The INQUIRE statement obtains information about the properties of a named file
or the connection to a particular unit.

There are three forms of the INQUIRE statement:

* Inquire by file, which requires the FILE= specifier.

* Inquire by output list, which requires the IOLENGTH= specifier
* Inquire by unit, which requires the UNIT= specifier.

Syntax

308 XL Fortran Advanced Edition for Mac OS X: Language Reference

INQUIRE

»>—INQUIRE——(—inquiry list—) >
|:(—IOLENGTH—=—iol—)—out‘pul‘_i1.‘em_lis1.‘—|
iol indicates the number of bytes of data that would result from the use of the
output list in an unformatted output statement. iol is a scalar integer
variable.

output_item
See the PRINT or WRITE statement

inquiry_list
is a list of inquiry specifiers for the inquire-by-file and inquire-by-unit
forms of the INQUIRE statement. The inquire-by-file form cannot contain
a unit specifier, and the inquire-by-unit form cannot contain a file specifier.
No specifier can appear more than once in any INQUIRE statement. The
inquiry specifiers are:

[UNIT=] u
is a unit specifier. It specifies the unit about which the inquire-by-unit form
of the statement is inquiring. # must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file
that is represented by a scalar integer expression, whose value is in the
range 0 through 2147483647. If the optional characters UNIT= are omitted,
u must be the first item in inquiry_list.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is a scalar variable of type INTEGER(4) or
default integer. When the input/output statement containing this specifier
is finished executing, ios is defined with:
* A zero value if no error condition occurs
* A positive value if an error occurs.

Coding the IOSTAT= specifier suppresses error messages.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

FILE= char_expr

is a file specifier. It specifies the name of the file about which the
inquire-by-file form of the statement is inquiring. char_expr is a scalar
character expression whose value, when any trailing blanks are removed, is
a valid Mac OS X operating system file name. The named file does not
have to exist, nor does it have to be associated with a unit.

| IBM Extension |

Note: A valid Mac OS X operating system file name must have a full path
name of total length = 1023 characters, with each file name = 255
characters long (though the full path name need not be specified).

| End of IBM Extension |

Statements and Attributes 309

INQUIRE

ACCESS= char_var
indicates whether the file is connected for direct access, sequential access,
or stream access. char_var is a scalar character variable that is assigned the
value SEQUENTIAL if the file is connected for sequential access. The
value assigned is DIRECT if the file is connected for direct access. The
value assigned is STREAM if the file is connected for stream access. If
there is no connection, char_var is assigned the value UNDEFINED.

FORM-= char_var
indicates whether the file is connected for formatted or unformatted
input/output. char_var is a scalar default character variable that is assigned
the value FORMATTED if the file is connected for formatted
input/output. The value assigned is UNFORMATTED if the file is
connected for unformatted input/output. If there is no connection, char_var
is assigned the value UNDEFINED.

POS=integer_var
integer_var is a scalar default integer variable that indicates the value of the
file position for a file connected for stream access. integer_var is assigned
the number of the file storage unit immediately following the current
position of a file connected for stream access. If the file is positioned at its
terminal position, integer_var is assigned a value one greater than the
highest-numbered storage unit in the file. integer_var becomes undefined if
the file is not connected for stream access or if the position of the file can
not be determined because of previous error conditions.

RECL= rcl

indicates the value of the record length of a file connected for direct access,
or the value of the maximum record length of a file connected for
sequential access.

| IBM Extension

rcl is a scalar variable of type INTEGER(4) or type default integer that is
assigned the value of the record length.

| End of IBM Extension

If the file is connected for formatted input/output, the length is the
number of characters for all records that contain character data. If the file
is connected for unformatted input/output, the length is the number of
bytes of data. If there is no connection, rc/ becomes undefined.

If the file is connected for stream access, rcl becomes undefined.

BLANK= char_var
indicates the default treatment of blanks for a file connected for formatted
input/output. char_var is a scalar character variable that is assigned the
value NULL if all blanks in numeric input fields are ignored, or the value
ZERO if all nonleading blanks are interpreted as zeros. If there is no
connection, or if the connection is not for formatted input/output, char_var
is assigned the value UNDEFINED.

EXIST= ex
indicates if a file or unit exists. ex is a scalar variable of type LOGICAL(4)
or default logical that is assigned the value true or false. For the
inquire-by-file form of the statement, the value true is assigned if the file
specified by the FILE= specifier exists. The value false is assigned if the

310 XL Fortran Advanced Edition for Mac OS X: Language Reference

INQUIRE

file does not exist. For the inquire-by-unit form of the statement, the value
true is assigned if the unit specified by UNIT= exists. The value false is
assigned if it is an invalid unit.

OPENED= od
indicates if a file or unit is connected. od is a scalar variable of type
LOGICAL(4) or default logical that is assigned the value true or false.
For the inquire-by-file form of the statement, the value true is assigned if
the file specified by FILE= char_var is connected to a unit. The value false
is assigned if the file is not connected to a unit. For the inquire-by-unit
form of the statement, the value true is assigned if the unit specified by
UNIT= is connected to a file. The value false is assigned if the unit is not
connected to a file. For preconnected files that have not been closed, the
value is true both before and after the first input/output operation.

NUMBER= num
indicates the external unit identifier currently associated with the file. num
is a scalar variable of type INTEGER(4) or default integer that is assigned
the value of the external unit identifier of the unit that is currently
connected to the file. If there is no unit connected to the file, num is
assigned the value -1.

NAMED= nmd
indicates if the file has a name. nmd is a scalar variable of type
LOGICAL(4) or default logical that is assigned the value true if the file
has a name. The value assigned is false if the file does not have a name.

NAME-= fn
indicates the name of the file. fn is a scalar character variable that is
assigned the name of the file to which the unit is connected.

SEQUENTIAL= seq
indicates if the file is connected for sequential access. seq is a scalar
character variable that is assigned the value YES if the file can be accessed
sequentially, the value NO if the file cannot be accessed sequentially, or the
value UNKNOWN if access cannot be determined.

STREAM=strm
is a scalar default character variable that indicates whether the file is
connected for stream access. strm is assigned the value YES if the file can
be accessed using stream access, the value NO if the file cannot be
accessed using stream access, or the value UNKNOWN if access cannot be
determined.

DIRECT= dir
indicates if the file is connected for direct access. dir is a scalar character
variable that is assigned the value YES if the file can be accessed directly,
the value NO if the file cannot be accessed directly, or the value
UNKNOWN if access cannot be determined.

FORMATTED-= fmt
indicates if the file can be connected for formatted input/output. fmt is a
scalar character variable that is assigned the value YES if the file can be
connected for formatted input/output, the value NO if the file cannot be
connected for formatted input/output, or the value UNKNOWN if
formatting cannot be determined.

UNFORMATTED= unf
indicates if the file can be connected for unformatted input/output. fmt is a
scalar character variable that is assigned the value YES if the file can be

Statements and Attributes 311

INQUIRE

connected for unformatted input/output, the value NO if the file cannot be
connected for unformatted input/output, or the value UNKNOWN if
formatting cannot be determined.

NEXTREC= nr
indicates where the next record can be read or written on a file connected
for direct access. nr is a scalar variable of type INTEGER(4), INTEGER(8),
or default integer that is assigned the value n + 1, where n is the record
number of the last record read or written on the file connected for direct
access. If the file is connected but no records were read or written since the
connection, nr is assigned the value 1. If the file is not connected for direct
access or if the position of the file cannot be determined because of a
previous error, nr becomes undefined.

| IBM Extension |

Because record numbers can be greater than 2**31-1, you may choose to

make the scalar variable specified with the NEXTREC= specifier of type

INTEGER(8). This could be accomplished in many ways, two examples

include:

* Explicitly declaring nr as INTEGER(8)

* Changing the default kind of integers with the -qintsize=8 compiler
option.

| End of IBM Extension |

POSITION= pos
indicates the position of the file. pos is a scalar character variable that is
assigned the value REWIND if the file is connected by an OPEN statement
for positioning at its initial point, APPEND if the file is connected for
positioning before its endfile record or at its terminal point, ASIS if the file
is connected without changing its position, or UNDEFINED if there is no
connection or if the file is connected for direct access.

If the file has been repositioned to its initial point since it was opened, pos
is assigned the value REWIND. If the file has been repositioned just before
its endfile record since it was opened (or, if there is no endfile record, at its
terminal point), pos is assigned the value APPEND. If both of the above
are true and the file is empty, pos is assigned the value APPEND. If the file
is positioned after the endfile record, pos is assigned the value ASIS.

ACTION= act
indicates if the file is connected for read and/or write access. act is a scalar
character variable that is assigned the value READ if the file is connected
for input only, WRITE if the file is connected for output only,
READWRITE if the file is connected for both input and output, and
UNDEFINED if there is no connection.

READ= rd
indicates if the file can be read. rd is a scalar character variable that is
assigned the value YES if the file can be read, NO if the file cannot be
read, and UNKNOWN if it cannot be determined if the file can be read.

WRITE= wrt
indicates if the file can be written to. wrt is a scalar character variable that
is assigned the value YES if the file can be written to, NO if the file cannot
be written to, and UNKNOWN if it cannot be determined if the file can be
written to.

312 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

INQUIRE

READWRITE= rw
indicates if the file can be both read from and written to. rw is a scalar
character variable that is assigned the value YES if the file can be both
read from and written to, NO if the file cannot be both read from and
written to, and UNKNOWN if it cannot be determined if the file can be
both read from and written to.

DELIM= del
indicates the form, if any, that is used to delimit character data that is
written by list-directed or namelist formatting. del is a scalar character
variable that is assigned the value APOSTROPHE if apostrophes are used
to delimit data, QUOTE if quotation marks are used to delimit data,
NONE if neither apostrophes nor quotation marks are used to delimit data,
and UNDEFINED if there is no file connection or no connection to
formatted data.

PAD= pd
indicates if the connection of the file had specified PAD=NO. pd is a scalar
character variable that is assigned the value NO if the connection of the
file had specified PAD=NO, and YES for all other cases.

SIZE=filesize
filesize is a scalar integer variable that is assigned the file size in bytes.

An INQUIRE statement can be executed before, while, or after a file is associated
with a unit. Any values assigned as the result of an INQUIRE statement are values
that are current at the time the statement is executed.

| IBM Extension |

If the unit or file is connected, the values returned for the ACCESS=,
SEQUENTIAL=, STREAM=, DIRECT=, ACTION=, READ=, WRITE=,
READWRITE=, FORM=, FORMATTED=, UNFORMATTED=, BLANKS=,
DELIM=, PAD=, RECL=, POSITION=, NEXTREC=, NUMBER=, NAME= and
NAMED-= specifiers are properties of the connection, and not of that file. Note that
the EXIST= and OPENED-= specifiers return true in these situations.

If a unit or file is not connected or does not exist, the ACCESS=, ACTION=,
FORM-=, BLANK=, DELIM=, POSITION= specifiers return the value
UNDEFINED, the DIRECT=, SEQUENTIAL=, STREAM=, FORMATTED=,
UNFORMATTED=, READ=, WRITE= and READWRITE= specifiers return the
value UNKNOWN, the RECL= and NEXTREC= specifier variables are not
defined, the PAD= specifier returns the value YES, and the OPENED specifier
returns the value false. The value returned by the SIZE= specifier is -1.

If a unit or file does not exist, the EXIST= and NAMED= specifiers return the
value false, the NUMBER= specifier returns the value -1, and the NAME=
specifier variable is not defined.

If a unit or file exists but is not connected, the EXIST= specifier returns the value
true. For the inquire-by-unit form of the statement, the NAMED= specifier returns
the value false, the NUMBER= specifier returns the unit number, and the
NAME-= specifier variable is undefined. For the inquire-by-file form of the
statement, the NAMED= specifier returns the value true, the NUMBER= specifier

Statements and Attributes 313

INQUIRE

returns -1, and the NAME= specifier returns the file name.

| End of IBM Extension

The same variable name must not be specified for more than one specifier in the
same INQUIRE statement, and must not be associated with any other variable in

the list of specifiers.

Examples

SUBROUTINE SUB(N)
CHARACTER(N) A(5)
INQUIRE (IOLENGTH=IOL) A(1) ! Inquire by output Tist
OPEN (7,RECL=I0L)

END SUBROUTINE

Related Information

+ [“Conditions and IOSTAT Values” on page 181|
+ [“Understanding XL Fortran Input/Output” on page 173|

INTEGER

Purpose

An INTEGER type declaration statement specifies the length and attributes of
objects and functions of type integer. Initial values can be assigned to objects.

Syntax

»>—INTEGER

I—kind_selector‘—l i:::
,—attr_spec list—::—

entity_decl_list—><

where:

attr_spec

ALLOCATABLE
AUTOMATIC
DIMENSION (array_spec)
EXTERNAL

INTENT (intent_spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

314 XL Fortran Advanced Edition for Mac OS X: Language Reference

INTEGER

kind_selector

(C B int_initialization_expr—) ><
KIND— =

(1)

* —int_literal_constant

Notes:
1 IBM Extension.

IBM Extension |

specifies the length of integer entities: 1, 2, 4 or 8. int_literal_constant cannot
specify a kind type parameter.

| End of IBM Extension |

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

is the double colon separator. Use the double colon separator when you
specify attributes, =initialization_expr, or => NULLO[_rs5_4.

array_spec
is a list of dimension bounds

entity_decl

»>—(

v

L (1) (2) |—(—arr‘ay_spec—)—|
* len

(3) (4)

(—array_spec—)— = len

\4
\4
A

(5)

/—initial_value_list—/
= —initialization_expr

(6)

=> —NULL()

Notes:
1 IBM Extension.
2 IBM Extension.
3 IBM Extension.
4 IBM Extension.
5 IBM Extension.
6

Fortran 95.

Statements and Attributes 315

INTEGER

a is an object name or function name. array_spec cannot be specified
for a function name with an implicit interface.

| IBM Extension |

len overrides the length as specified in kind_selector, and cannot specify
a kind type parameter. The entity length must be an integer literal
constant that represents one of the permissible length
specifications.

| End of IBM Extension |

| IBM Extension |

initial_value
provides an initial value for the entity specified by the immediately
preceding name

| End of IBM Extension |

initialization_expr
provides an initial value, by means of an initialization expression,
for the entity specified by the immediately preceding name

| Fortran 95

=> NULL(
provides the initial value for the pointer object

| End of Fortran 95

Rules

| Fortran 95 |

Within the context of a derived type definition:

* If => appears in a component initialization, the POINTER attribute must appear
in the attr_spec_list.

 If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

* The compiler will evaluate initialization_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.
| End of Fortran 95 |

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any

attributes specified for the entities, as detailed in the corresponding attribute
statements.

316 XL Fortran Advanced Edition for Mac OS X: Language Reference

INTEGER

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a pointer, a function result, an object in blank
common, an integer pointer, an external name, an intrinsic name, or an automatic
object. Nor can an object be initialized if it has the AUTOMATIC attribute. The
object may be initialized if it appears in a named common block in a block data
program unit or if it appears in a named common block in a module.

| Fortran 95 |

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

| End of Fortran 95 |

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of

a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and initialization_expr

or NULL(O[_Fe5_4 is specified, the variable is initially defined.

| Fortran 95 |

If the entity you are declaring is a derived type component, and initialization_expr
or NULL() is specified, the derived type has default initialization.

| End of Fortran 95 |

a becomes defined with the value determined by initialization_expr, in accordance
with the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of initialization_expr

or NULL() implies that a is a saved object, except for an object
in a named common block. The initialization of an object could affect the
fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or POINTER
attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

Statements and Attributes 317

INTEGER

| IBM Extension

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

| End of IBM Extension

Examples

MODULE INT
INTEGER, DIMENSION(3) :: A,B,C
INTEGER :: X=234,Y=678

END MODULE INT

Related Information

+ |“Integer” on page 22|
+ |“Initialization Expressions” on page 87]
* |"How Type Is Determined” on page 57) for details on the implicit typing rules
* [“Array Declarators” on page 6
+ |“Automatic Objects” on page 22|
+ |“Storage Classes for Variables” on page 62|
 ["DATA” on page 256 for details on initial values

INTENT
Purpose
The INTENT attribute specifies the intended use of dummy arguments.
Syntax
»>—INTENT—(——IN) dummy _arg _name_list ><
OUTﬂ |—: :J
INOUT
dummy_arg_name
is the name of a dummy argument, which cannot be a dummy procedure
Rules

If you specify a nonpointer, nonallocatable dummy argument, the INTENT
attribute will have the following characteristics:

e INTENT(IN) specifies that the dummy argument must not be redefined or
become undefined during the execution of the subprogram.

e INTENT(OUT) specifies that the dummy argument must be defined before it is
referenced within the subprogram. Such a dummy argument might not become
undefined on invocation of the subprogram.

¢ INTENT(INOUT) specifies that the dummy argument can both receive and
return data to the invoking subprogram.

If you specify a pointer dummy argument, the INTENT attribute will have the
following characteristics:

318 XL Fortran Advanced Edition for Mac OS X: Language Reference

INTENT

¢ INTENT(IN) specifies that during the execution of the procedure, the association
status of the pointer dummy argument cannot be changed, except if the target of
the pointer is deallocated. If the target of the pointer is deallocated, the
association status of the pointer dummy argument becomes undefined.

You cannot use an INTENT(IN) pointer dummy argument as a pointer object in
a pointer assignment statement. You cannot allocate, deallocate, or nullify an
INTENT(IN) pointer dummy argument

You cannot specify an INTENT(IN) pointer dummy argument as an actual
argument to a procedure if the associated dummy argument is a pointer with
INTENT(OUT) or INTENT(INOUT) attribute.

* INTENT(OUT) specifies that at the execution of the procedure, the association
status of the pointer dummy argument is undefined

* INTENT(INOUT) specifies that the dummy argument can both receive and
return data to the invoking subprogram.

If you specify an allocatable dummy argument, the INTENT attribute will have the
following characteristics:

* INTENT(IN) specifies that during the execution of the procedure, the allocation
status of the dummy argument cannot be changed, and it must not be redefined
or become undefined.

* INTENT(OUT) specifies that at the execution of the procedure, if the associated
actual argument is currently allocated it will be deallocated.

¢ INTENT(INOUT) specifies that the dummy argument can both receive and
return data to the invoking subprogram.

If you do not specify the INTENT attribute for a pointer or allocatable dummy
argument, its use is subject to the limitations and restrictions of the associated
actual argument.

An actual argument that becomes associated with a dummy argument with an
intent of OUT or INOUT must be definable. Hence, a dummy argument with an
intent of IN, or an actual argument that is a constant, a subobject of a constant, or
an expression, cannot be passed as an actual argument to a subprogram expecting
an argument with an intent of OUT or INOUT.

An actual argument that is an array section with a vector subscript cannot be
associated with a dummy array that is defined or redefined (that is, with an intent
of OUT or INOUT).

— Attributes Compatible with the INTENT Attribute

. :
+ [DIMENSIO .
: :

- VOLATIL

The [VALUE] attribute can only be used for a dummy argument with an intent of
IN.

Statements and Attributes 319

INTENT

| IBM Extension |

The %VAL built-in function, used for interlanguage calls, can only be used for an
actual argument that corresponds to a dummy argument with an intent of IN, or
has no intent specified. This constraint does not apply to the %REF built-in
function.

| End of IBM Extension |

Examples

PROGRAM MAIN
DATA R,S /12.34,56.78/
CALL SUB(R+S,R,S)

END PROGRAM

SUBROUTINE SUB (A,B,C)
INTENT(IN) A
INTENT (OUT) B
INTENT (INOUT) C

C=C+A+ABS(A) I Valid references to A and C
I Valid redefinition of C
B=C**2 I Valid redefinition of B

END SUBROUTINE

Related Information

+ |“Intent of Dummy Arguments” on page 15§

+ |[“Argument Association” on page 156|

* [“%VAL and %REF” on page 157 |for details on interlanguage calls

 ["Dummy Arguments” on page 155|

INTERFACE

Purpose

The INTERFACE statement is the first statement of an interface block, which can
specify an explicit interface for an external or dummy procedure.

Syntax

»>—INTERFACE ><
l—generic_spec—|

generic_spec

> generic_name ><
EOPERATOR—(—defined_operator—)—
ASSIGNMENT—(— = —)————

defined_operator
is a defined unary operator, defined binary operator, or extended intrinsic
operator

320 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

INTERFACE

If generic_spec is present, the interface block is generic. If generic_spec is absent, the
interface block is nongeneric. generic_name specifies a single name to reference all

procedures in the interface block. At most, one specific procedure is invoked each
time there is a procedure reference with a generic name.

| Fortran 95 |

If a generic_spec appears in an INTERFACE statement, it must match the
generic_spec in the corresponding END INTERFACE statement.

If the generic_spec in an INTERFACE statement is a generic_name, the generic_spec of
the corresponding END INTERFACE statement must be the same generic_name.

| End of Fortran 95 |

An INTERFACE statement without a generic_spec can match any END
INTERFACE statement, with or without a generic_spec.

A specific procedure must not have more than one explicit interface in a given
scoping unit.

You can always reference a procedure through its specific interface, if accessible. If
a generic interface exists for a procedure, the procedure can also be referenced
through the generic interface.

If generic_spec is OPERATOR(defined_operator), the interface block can define a
defined operator or extend an intrinsic operator.

If generic_spec is ASSIGNMENT(=), the interface block can extend intrinsic
assignment.

Examples

INTERFACE ! Nongeneric interface block
FUNCTION VOL(RDS,HGT)
REAL VOL, RDS, HGT
END FUNCTION VOL
FUNCTION AREA (RDS)
REAL AREA, RDS
END FUNCTION AREA
END INTERFACE

INTERFACE OPERATOR (.DETERMINANT.) ! Defined operator interface
FUNCTION DETERMINANT (X)
INTENT(IN) X
REAL X(50,50), DETERMINANT
END FUNCTION
END INTERFACE

INTERFACE ASSIGNMENT (=) I Defined assignment interface
SUBROUTINE BIT _TO NUMERIC (N,B)
INTEGER, INTENT(OUT) :: N
LOGICAL, INTENT(IN) :: B(:)
END SUBROUTINE
END INTERFACE

Statements and Attributes 321

INTERFACE

Related Information

* |“Explicit Interface” on page 137|

* |“Extended Intrinsic and Defined Operations” on page 97

* |"Defined Operators” on page 143|

* [“Defined Assignment” on page 144
* |"FUNCTION” on page 298
+ ["SUBROUTINE” on page 372

+ |"'MODULE PROCEDURE” on page 329
* |“Procedure References” on page 151

* [“Unambiguous Generic Procedure References” on page 141) for details about the
rules on how any two procedures with the same generic name must differ

INTRINSIC

322

Purpose

The INTRINSIC attribute identifies a name as an intrinsic procedure and allows
you to use specific names of intrinsic procedures as actual arguments.

Syntax

Rules

»—INTRINSIC—L—_I—name_list <

name is the name of an intrinsic procedure

If you use a specific intrinsic procedure name as an actual argument in a scoping
unit, it must have the INTRINSIC attribute. Generic names can have the
INTRINSIC attribute, but you cannot pass them as arguments unless they are also
specific names.

A generic or specific procedure that has the INTRINSIC attribute keeps its generic
or specific properties.

A generic intrinsic procedure that has the INTRINSIC attribute can also be the
name of a generic interface block. The generic interface block defines extensions to
the generic intrinsic procedure.

Attributes Compatible with the INTRINSIC Attribute

* PRIVATH + PuBLI]

Examples

PROGRAM MAIN
INTRINSIC SIN, ABS
INTERFACE ABS

XL Fortran Advanced Edition for Mac OS X: Language Reference

INTRINSIC

LOGICAL FUNCTION MYABS (ARG)
LOGICAL ARG
END FUNCTION
END INTERFACE

LOGICAL LANS,LVAR
REAL(8) DANS,DVAR
DANS = ABS(DVAR) ! Calls the DABS intrinsic procedure
LANS = ABS(LVAR) I Calls the MYABS external procedure

I Pass intrinsic procedure name to subroutine
CALL DOIT(0.5,SIN,X) I Passes the SIN specific intrinsic
END PROGRAM

SUBROUTINE DOIT(RIN,OPER,RESULT)
INTRINSIC :: MATMUL
INTRINSIC COS
RESULT = OPER(RIN)

END SUBROUTINE

Related Information

* Generic and specific intrinsic procedures are listed in [“Intrinsic Procedures” on|
page 421.|See this section to find out if a specific intrinsic name can be used as

an actual argument.

+ |“Generic Interface Blocks” on page 141

LOGICAL

Purpose

A LOGICAL type declaration statement specifies the length and attributes of
objects and functions of type logical. Initial values can be assigned to objects.

Syntax

»»—| 0GICAL entity decl _list—>«

|—kind_selector—| i:::
,—attr_spec_list—::

Statements and Attributes 323

LOGICAL

where:

attr_spec

ALLOCATABLE
AUTOMATIC
DIMENSION (array_spec)
EXTERNAL
INTENT (intent_spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET
VOLATILE

324 XL Fortran Advanced Edition for Mac OS X: Language Reference

LOGICAL

kind_selector

(C B int_initialization_expr—) ><
KIND— =

(1)

* —int_literal_constant

Notes:
1 IBM Extension.

IBM Extension

specifies the length of logical entities: 1, 2, 4 or 8. int_literal_constant cannot
specify a kind type parameter.

| End of IBM Extension |

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

is the double colon separator. Use the double colon separator when you
specify attributes, =initialization_expr, or => NULLO[_rs5_4.

array_spec
is a list of dimension bounds

entity_decl

»>—(

v

L (1) (2) |—(—arr‘ay_spec—)—|
* len

(3) (4)

(—array_spec—)— = len

\4
\4
A

(5)

/—initial_value_list—/
= —initialization_expr

(6)

=> —NULL()

Notes:
1 IBM Extension.
2 IBM Extension.
3 IBM Extension.
4 IBM Extension.
5 IBM Extension.
6

Fortran 95.

Statements and Attributes 325

LOGICAL

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

| IBM Extension |

len overrides the length as specified in kind_selector, and cannot specify
a kind type parameter. The entity length must be an integer literal
constant that represents one of the permissible length
specifications.

| End of IBM Extension |

| IBM Extension |

initial_value
provides an initial value for the entity specified by the immediately
preceding name

| End of IBM Extension |

initialization_expr
provides an initial value, by means of an initialization expression,
for the entity specified by the immediately preceding name

| Fortran 95

=> NULL(
provides the initial value for the pointer object

| End of Fortran 95

Rules

| Fortran 95 |

Within the context of a derived type definition:

* If => appears in a component initialization, the POINTER attribute must appear
in the attr_spec_list.

 If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

* The compiler will evaluate initialization_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.
| End of Fortran 95 |

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any

attributes specified for the entities, as detailed in the corresponding attribute
statements.

326 XL Fortran Advanced Edition for Mac OS X: Language Reference

LOGICAL

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a pointer, a function result, an object in blank
common, an integer pointer, an external name, an intrinsic name, or an automatic
object. Nor can an object be initialized if it has the AUTOMATIC attribute. The
object may be initialized if it appears in a named common block in a block data
program unit or if it appears in a named common block in a module.

| Fortran 95 |

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

| End of Fortran 95 |

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of

a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and initialization_expr

or NULL(O[_Fe5_4 is specified, the variable is initially defined.

| Fortran 95 |

If the entity you are declaring is a derived type component, and initialization_expr
or NULL() is specified, the derived type has default initialization.

| End of Fortran 95 |

a becomes defined with the value determined by initialization_expr, in accordance
with the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of initialization_expr

or NULL(O[_Fe5_4 implies that a is a saved object, except for an object in
a named common block. The initialization of an object could affect the
fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or POINTER
attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

Statements and Attributes 327

LOGICAL

| IBM Extension

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

| End of IBM Extension

Examples

LOGICAL, ALLOCATABLE :: L(:,:)
LOGICAL :: Z=.TRUE.

Related Information
* |"Logical” on page 28

* [“Initialization Expressions” on page 82]

+ [“How Type Is Determined” on page 57/ for details on the implicit typing rules

» [“Array Declarators” on page 67|

+ |“Automatic Objects” on page 22|

+ |“Storage Classes for Variables” on page 62|

+ ["DATA” on page 256 for details on initial values

MODULE

Purpose

The MODULE statement is the first statement of a module program unit, which
contains specifications and definitions that can be made accessible to other
program units.

Syntax

»>—MODULE—module_name ><

Rules

The module name is a global entity that is referenced by the USE statement in
other program units to access the public entities of the module. The module name
must not have the same name as any other program unit, external procedure or
common block in the program, nor can it be the same as any local name in the
module.

If the END statement that completes the module specifies a module name, the
name must be the same as that specified in the MODULE statement.

Examples

MODULE MM
CONTAINS
REAL FUNCTION SUM(CARG)
COMPLEX CARG
SUM_FNC(CARG) = IMAG(CARG) + REAL(CARG)
SUM = SUM_FNC (CARG)

328 XL Fortran Advanced Edition for Mac OS X: Language Reference

MODULE

RETURN
ENTRY AVERAGE (CARG)
AVERAGE = SUM_FNC(CARG) / 2.0
END FUNCTION SUM
SUBROUTINE SHOW_SUM(SARG)
COMPLEX SARG
REAL SUM_TMP
10 FORMAT('SUM:',E10.3,' REAL:',E10.3,' IMAG',E10.3)
SUM_TMP = SUM(CARG=SARG)
WRITE(10,10) SUM_TMP, SARG
END SUBROUTINE SHOW_SUM
END MODULE MM

Related Information

* [‘Modules” on page 146
* |"USE” on page 384
* [“Use Association” on page 132|

« [“END” on page 276/ for details on the END MODULE statement
[“PRIVATE” on page 346

+ [“"PROTECTED” on page 348|

+ [“PUBLIC” on page 350|

MODULE PROCEDURE

Purpose

The MODULE PROCEDURE statement lists those module procedures that have a
generic interface.

Syntax

Rules

A\
A

»>—MODULE PROCEDURE—procedure_name_list

| Fortran 95 |

The MODULE PROCEDURE statement can appear anywhere among the interface
bodies in an interface block that has a generic specification.

| End of Fortran 95 |

MODULE PROCEDURE statements must be contained in a scoping unit where
procedure_name can be accessed as a module procedure, and must be the name that
is accesible in this scope.

procedure_name must not have been previously associated with the generic
specification of the interface block in which it appears, either by a previous

appearance in an interface block or by use or by host association.

The characteristics of module procedures are determined by module procedure
definitions, not by interface bodies.

Statements and Attributes 329

MODULE PROCEDURE

Examples

MODULE M
CONTAINS
SUBROUTINE S1(IARG)
IARG=1
END SUBROUTINE
SUBROUTINE S2(RARG)
RARG=1.1
END SUBROUTINE
END MODULE

USE M
INTERFACE SS
SUBROUTINE SS1(IARG,JARG)
END SUBROUTINE
MODULE PROCEDURE S1, S2
END INTERFACE

CALL SS(N) I Calls subroutine S1 from M
CALL SS(I,J) I Calls subroutine SS1
END

Related Information

“Interface Blocks” on page 138|
+ |“INTERFACE” on page 320|
+ [“Modules” on page 146

NAMELIST

Purpose

The NAMELIST statement specifies one or more lists of names for use in
WRITE, and [PRINT]|statements.

Syntax

]

»»—NAMELIST—"/—Nname—/—variable_name_list ><

Nname is a namelist group name

variable_name
must not be an array dummy argument with a nonconstant bound, a
variable with nonconstant character length, an automatic object, a pointer,
a variable of a type that has an ultimate component that is a pointer, an
allocatable object, or a pointee.

Rules

The list of names belonging to a namelist group name ends with the appearance of
another namelist group name or the end of the NAMELIST statement.

variable_name must either be accessed via use or host association, or have its type
and type parameters specified by previous specification statements in the same
scoping unit or by the implicit typing rules. If typed implicitly, any appearance of

330 XL Fortran Advanced Edition for Mac OS X: Language Reference

NAMELIST

the object in a subsequent type declaration statement must confirm the implied
type and type parameters. A derived-type object must not appear as a list item if
any component ultimately contained within the object is not accessible within the
scoping unit containing the namelist input/output statement on which its
containing namelist group name is specified.

variable_name can belong to one or more namelist lists. If the namelist group name
has the PUBLIC attribute, no item in the list can have the PRIVATE attribute or
private components.

Nname can be specified in more than one NAMELIST statement in the scoping
unit, and more than once in each NAMELIST statement. The variable_name_list
following each successive appearance of the same Nname in a scoping unit is
treated as the continuation of the list for that Nname.

A namelist name can appear only in input/output statements. The rules for
input/output conversion of namelist data are the same as the rules for data
conversion.

Examples

DIMENSION X(5), Y(10)

NAMELIST /NAME1/ I,d,K

NAMELIST /NAME2/ A,B,C /NAME3/ X,Y
WRITE (10, NAME1)

PRINT NAME2

Related Information
* [“Namelist Formatting” on page 215
s |Setting Run-time Options|in the|LIser’s Guidg|

NULLIFY

Purpose

The NULLIFY statement causes pointers to become disassociated.

Syntax

»>—NULLIFY—(—pointer object list—) ><

pointer_object
is a pointer variable name or structure component

Rules
A pointer_object must have the POINTER attribute.

Tip
Always initialize a pointer with the NULLIFY statement, pointer assignment,
default initialization or explicit initialization.

Statements and Attributes 331

NULLIFY

Examples

TYPE T
INTEGER CELL
TYPE(T), POINTER :: NEXT
ENDTYPE T
TYPE(T) HEAD, TAIL
TARGET :: TAIL
HEADZNEXT => TAIL
NULLIFY (TAIL%NEXT)
END

Related Information

+ [“Pointer Assienment” on page 113|
* |“Pointer Association” on page 133

OPEN

Purpose

The OPEN statement can be used to connect an existing external file to a unit,
create an external file that is preconnected, create an external file and connect it to
a unit, or change certain specifiers of a connection between an external file and a
unit.

Syntax

»>—OPEN—(—open_list—) ><

open_list
is a list that must contain one unit specifier (UNIT=u) and can also contain
one of each of the other valid specifiers. The valid specifiers are:

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file
that is represented by a scalar integer expression, whose value is in the
range 0 through 2,147,483,647. If the optional characters UNIT= are
omitted, u must be the first item in open_list.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is a scalar variable of type INTEGER(4) or
default integer. When the input/output statement containing this specifier
finishes execution, ios is defined with:

* A zero value if no error condition occurs
* A positive value if an error occurs.
ERR= stmt_label
is an error specifier that specifies the statement label of an executable

statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

FILE= char_expr

332 XL Fortran Advanced Edition for Mac OS X: Language Reference

OPEN

is a file specifier that specifies the name of the file to be connected to the
specified unit.

| IBM Extension |

char_expr is a scalar character expression whose value, when any trailing
blanks are removed, is a valid Mac OS X operating system file name. If the
file specifier is omitted and is required, the unit becomes implicitly
connected (by default) to fort., where u is the unit specified with any
leading zeros removed. Use the UNIT_VARS run-time option to allow
alternative files names to be used for files that are implicitly connected.

Note: A valid Mac OS X operating system file name must have a full path
name of total length =1023 characters, with each file name =255
characters long (although the full path name need not be specified).

| End of IBM Extension |

STATUS= char_expr
specifies the status of the file when it is opened. char_expr is a scalar
character expression whose value, when any trailing blanks are removed, is
one of the following;:

¢ OLD, to connect an existing file to a unit. If OLD is specified, the file
must exist. If the file does not exist, an error condition will occur.

* NEW, to create a new file, connect it to a unit, and change the status to
OLD. If NEW is specified, the file must not exist. If the file already
exists, an error condition will occur.

e SCRATCH, to create and connect a new file that will be deleted when it
is disconnected. SCRATCH must not be specified with a named file
(that is, FILE=char_expr must be omitted).

* REPLACE. If the file does not already exist, the file is created and the
status is changed to OLD. If the file exists, the file is deleted, a new file
is created with the same name, and the status is changed to OLD.

* UNKNOWN, to connect an existing file, or to create and connect a new
file. If the file exists, it is connected as OLD. If the file does not exist, it
is connected as NEW.

UNKNOWN is the default.

ACCESS= char_expr
specifies the access method for the connection of the file. char_expr is a
scalar character expression whose value, when any trailing blanks are
removed, is either SEQUENTIAL, DIRECT or STREAM. SEQUENTIAL is
the default. If ACCESS= is DIRECT, RECL= must be specified. If
ACCESS= is STREAM, RECL= must not be specified.

FORM= char_expr
specifies whether the file is connected for formatted or unformatted
input/output. char_expr is a scalar character expression whose value, when
any trailing blanks are removed, is either FORMATTED or
UNFORMATTED. If you connect the file for sequential access,
FORMATTED is the default. If you connect the file for direct or stream
access, UNFORMATTED is the default.

RECL= integer_expr

Statements and Attributes 333

OPEN

specifies the length of each record in a file being connected for direct
access or the maximum length of a record in a file being connected for
sequential access. integer_expr is a scalar integer expression whose value
must be positive. This specifier must be present when a file is being
connected for direct access. For formatted input/output, the length is the
number of characters for all records that contain character data. For
unformatted input/output, the length is the number of bytes required for
the internal form of the data. The length of an unformatted sequential
record does not count the four-byte fields surrounding the data.

| IBM Extension

If RECL= is omitted when a file is being connected for sequential access,
the length is 2**31-1, minus the record terminator. For a formatted
sequential file, the default record length is 2**31-2. For an unformatted
sequential file, the default record length is 2**31-9.

For a file that cannot be accessed randomly, the default length is 2**15
(32,768).

| End of IBM Extension

BLANKS= char_expr
controls the default interpretation of blanks when you are using a format
specification. char_expr is a scalar character expression whose value, when
any trailing blanks are removed, is either NULL or ZERO. If BLANK= is
specified, you must use FORM="FORMATTED"’. If BLANK= is not
specified and you specify FORM="FORMATTED’, NULL is the default.

POSITION= char_expr
specifies the file position for a file connected for sequential or stream
access. A file that did not exist previously is positioned at its initial point.
char_expr is a scalar character expression whose value, when any trailing
blanks are removed, is either ASIS, REWIND, or APPEND. REWIND
positions the file at its initial point. APPEND positions the file before the
endfile record or, if there is no endfile record, at the terminal point. ASIS
leaves the position unchanged. The default value is ASIS except under the
following conditions:

* The first input/output statement (other than the INQUIRE statement)
referring to the unit after the OPEN statement is a WRITE statement,
and either:

— The STATUS= specifier is UNKNOWN and the -qposition compiler
option specifies appendunknown, or

— The STATUS= specifier is OLD and the -qposition compiler option
specifies appendold.

In such cases, the default value for the POSITION= specifier is APPEND
at the time the WRITE statement is executed.

ACTION= char_expr
specifies the allowed input/output operations. char_expr is a scalar
character expression whose value evaluates to READ, WRITE or
READWRITE. If READ is specified, WRITE and ENDFILE statements
cannot refer to this connection. If WRITE is specified, READ statements
cannot refer to this connection. The value READWRITE permits any
input/output statement to refer to this connection. If the ACTION=
specifier is omitted, the default value depends on the actual file
permissions:

334 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

OPEN

* If the STATUS= specifier has the value OLD or UNKNOWN and the
file already exists:

— The file is opened with READWRITE
— If the above is not possible, the file is opened with READ
— If neither of the above is possible, the file is opened with WRITE.

* If the STATUS= specifier has the value NEW, REPLACE, SCRATCH or
UNKNOWN and the file does not exist:

— The file is opened with READWRITE
— If the above is not possible, the file is opened with WRITE.

DELIM= char_expr
specifies what delimiter, if any, is used to delimit character constants
written with list-directed or namelist formatting. char_expr is a scalar
character expression whose value must evaluate to APOSTROPHE,
QUOTE, or NONE. If the value is APOSTROPHE, apostrophes delimit
character constants and all apostrophes within character constants are
doubled. If the value is QUOTE, double quotation marks delimit character
constants and all double quotation marks within character constants are
doubled. If the value is NONE, character constants are not delimited and
no characters are doubled. The default value is NONE. The DELIM=
specifier is permitted only for files being connected for formatted
input/output, although it is ignored during input of a formatted record.

PAD= char_expr
specifies if input records are padded with blanks. char_expr is a scalar
character expression that must evaluate to YES or NO. If the value is YES,
a formatted input record is padded with blanks if an input list is specified
and the format specification requires more data from a record than the
record contains. If NO is specified, the input list and format specification
must not require more characters from a record than the record contains.
The default value is YES. The PAD= specifier is permitted only for files
being connected for formatted input/output, although it is ignored during
output of a formatted record.

| IBM Extension |

If the -qx1f77 compiler option specifies the noblankpad suboption and the
file is being connected for formatted direct input/output, the default value
is NO when the PAD= specifier is omitted.

| End of IBM Extension |

If a unit is connected to a file that exists, an OPEN statement for that unit can be
performed. If the FILE= specifier is not included in the OPEN statement, the file to
be connected to the unit is the same as the file to which the unit is connected.

If the file to be connected to the unit is not the same as the file to which the unit is
connected, the effect is as if a statement without a STATUS= specifier had
been executed for the unit immediately prior to the execution of the OPEN
statement.

If the file to be connected to the unit is the same as the file to which the unit is
connected, only the BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers

can have a value different from the one currently in effect. Execution of the OPEN

Statements and Attributes 335

OPEN

statement causes any new value for the BLANK=, DELIM= or PAD= specifiers to
be in effect, but does not cause any change in any of the unspecified specifiers or
the position of the file. Any ERR= and IOSTAT= specifiers from OPEN statements
previously executed have no effect on the current OPEN statement. If you specify
the STATUS= specifier it must have the value OLD. To specify the same file as the
one currently connected to the unit, you can specify the same file name, omit the
FILE= specifier, or specify a file symbolically linked to the same file.

If a file is connected to a unit, an OPEN statement on that file and a different unit
cannot be performed.

| IBM Extension

If the STATUS= specifier has the value OLD, NEW or REPLACE, the FILE=
specifier is optional.

Unit 0 cannot be specified to connect to a file other than the preconnected file, the
standard error device, although you can change the values for the BLANK=,
DELIM= and PAD= specifiers.

| End of IBM Extension |

If the ERR= and IOSTAT= specifiers are set and an error is encountered, transfer is
made to the statement specified by the ERR= specifier and a positive integer value
is assigned to ios.

| IBM Extension |

If IOSTAT= and ERR= are not specified,

* The program stops if a severe error is encountered

* The program continues to the next statement if a recoverable error is
encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

| End of IBM Extension |

Examples

! Open a new file with name fname

CHARACTER*20 FNAME
FNAME = 'INPUT.DAT'
OPEN(UNIT=8,FILE=FNAME,STATUS="NEW"',FORM="'FORMATTED")

OPEN (4,FILE="myfile")
OPEN (4,FILE="myfile", PAD="N0") ! Changing PAD= value to NO

I Connects unit 2 to a tape device for unformatted, sequential
I write-only access:

OPEN (2, FILE="/dev/rmt®",ACTION="WRITE",POSITION="REWIND", &
& FORM="UNFORMATTED",ACCESS="SEQUENTIAL",RECL=32767)

Related Information
“Units” on page 176|

+ Item 3 under|Appendix A, “Compatibility Across Standards,” on page 603

+ [“Understanding XL Fortran Input/Output” on page 173}

336 XL Fortran Advanced Edition for Mac OS X: Language Reference

OPEN

* [Setting Run-time Options|in the [User’s Guidd
* |-gposition Option|in the

* |-gx1f77 Option|in the [User’s Guide|

* |"CLOSE” on page 245

* ["READ” on page 351|

[“WRITE” on page 392

OPTIONAL
Purpose
The OPTIONAL attribute specifies that a dummy argument need not be associated
with an actual argument in a reference to the procedure.
Syntax
»»—0 PTIONAL—m—dummy_arg_name_l ist ><
Rules

A procedure that has an optional dummy argument must have an explicit interface
in any scope in which the procedure is referenced.

Use the PRESENT intrinsic function to determine if an actual argument has been
associated with an optional dummy argument. Avoid referencing an optional
dummy argument without first verifying that the dummy argument is present.

A dummy argument is considered present in a subprogram if it is associated with
an actual argument, which itself can also be a dummy argument that is present (an
instance of propagation). A dummy argument that is not optional must be present;
that is, it must be associated with an actual argument.

An optional dummy argument that is not present may be used as an actual
argument corresponding to an optional dummy argument, which is then also
considered not to be associated with an actual argument. An optional dummy
argument that is not present is subject to the following restrictions:

 If it is a dummy data object or subobject, it cannot be defined or referenced.
 If it is a dummy procedure, it cannot be referenced.

* It cannot appear as an actual argument corresponding to a non-optional dummy
argument, other than as the argument of the PRESENT intrinsic function.

e If it is an array, it must not be supplied as an actual argument to an elemental
procedure unless an array of the same rank is supplied as an actual argument,
which corresponds to a nonoptional argument of that elemental procedure.

The OPTIONAL attribute cannot be specified for dummy arguments in an

interface body that specifies an explicit interface for a defined operator or defined
assignment.

Statements and Attributes 337

OPTIONAL

— Attributes Compatible with the OPTIONAL Attribute

* [ALLOCATABLE * INTEN * [VALUE
* IDIMENSIO * |[POINTE * [VOLATILE
* [EXTERNA * [TARGET

Examples

SUBROUTINE SUB (X,Y)
INTERFACE
SUBROUTINE SUB2 (A,B)
OPTIONAL :: B
END SUBROUTINE
END INTERFACE

OPTIONAL :: Y

IF (PRESENT(Y)) THEN I Reference to Y conditional
X=X+Y ! on its presence

ENDIF

CALL SUB2(X,Y)
END SUBROUTINE

SUBROUTINE SUB2 (A,B)
OPTIONAL :: B ! B and Y are argument associated,
IF (PRESENT(B)) THEN ! even if Y is not present, in
B=B=xA ! which case, B is also not present
PRINT*, B
ELSE
A = Axx2
PRINT*, A
ENDIF
END SUBROUTINE

Related Information
* |"Optional Dummy Arguments” on page 159

* |“Interface Concepts” on page 136|
 |"PRESENT(A)” on page 504
¢ ["Dummy Arguments” on page 155|

PARAMETER

Purpose
The PARAMETER attribute specifies names for constants.

Syntax

»»—PARAMETER— (——constant_name— = —init_expr)

init_expr
is an initialization expression

338 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

Examp

PARAMETER

A named constant must have its type, shape, and parameters specified in a
previous specification statement in the same scoping unit or be declared implicitly.
If a named constant is implicitly typed, its appearance in any subsequent type
declaration statement or attribute specification statement must confirm the implied
type and any parameter values.

You can define constant_name only once with a PARAMETER attribute in a scoping
unit.

A named constant that is specified in the initialization expression must have been
previously defined (possibly in the same PARAMETER or type declaration
statement, if not in a previous statement) or made accessible through use or host
association.

The initialization expression is assigned to the named constant using the rules for
intrinsic assignment. If the named constant is of type character and it has inherited
length, it takes on the length of the initialization expression.

Attributes Compatible with the PARAMETER Attribute

¢ IDIMENSIO * |PRIVATE ¢ [PUBLIC|
les
REAL, PARAMETER :: TW0=2.0
COMPLEX XCONST
REAL RPART, IPART

PARAMETER (RPART=1.1,IPART=2.2)
PARAMETER (XCONST = (RPART,IPART+3.3))

CHARACTER*2, PARAMETER :: BB=' '

END

Related Information

* |“Initialization Expressions” on page 87|

* |"Data Objects” on page 21|

PAUSE

Purpose

Syntax

The PAUSE statement temporarily suspends the execution of a program and prints
the keyword PAUSE and, if specified, a character constant or digit string to unit 0.

Statements and Attributes 339

PAUSE

v
A

»>—PAUSE
i:char_constanﬂ
digit_string

char_constant
is a scalar character constant that is not a Hollerith constant

digit_string
is a string of one to five digits

Rules

| IBM Extension

After execution of a PAUSE statement, processing continues when you press the
Enter key. If unit 5 is not connected to the terminal, the PAUSE statement does not
suspend execution.

| End of IBM Extension

| Fortran 95

The PAUSE statement has been deleted in Fortran 95.

| End of Fortran 95

Examples

PAUSE 'Ensure backup tape is in tape drive'
PAUSE 10 ! Qutput: PAUSE 10

Related Information
s |"Deleted Features” on page 606]

POINTER (Fortran 90)

Purpose
The POINTER attribute designates objects as pointer variables.
The term pointer refers to objects with the Fortran 90 POINTER attribute. The
integer POINTER statement provides details on what was documented in previous

versions of XL Fortran as the POINTER statement; these pointers are now referred
to as integer pointers.

Syntax

340 XL Fortran Advanced Edition for Mac OS X: Language Reference

POINTER - Fortran 90

»—POINTER—L——I—'obj ect_name B 7 <
i (—deferred_shape_spec_list—)

deferred_shape_spec
is a colon (:), where each colon represents a dimension

Rules

object_name refers to a data object or function result. If object_name is declared
elsewhere in the scoping unit with the DIMENSION attribute, the array
specification must be a deferred_shape_spec_list.

object_name must not appear in an integer POINTER, NAMELIST, or
EQUIVALENCE statement. If object_name is a component of a derived-type
definition, any variables declared with that type cannot be specified in an
EQUIVALENCE or NAMELIST statement.

Pointer variables can appear in common blocks and block data program units.
An object having a component with the POINTER attribute can itself have the

TARGET, INTENT, or ALLOCATABLE attibutes, although it cannot appear in a
data transfer statement.

— Attributes Compatible with the POINTER Attribute

. » [OPTIONAL [PUBLIC
: * [PRIVATE :
:

These attributes apply only to the pointer itself, not to any associated targets,
except for the DIMENSION attribute, which applies to associated targets.

Examples
Examplel:

INTEGER, POINTER :: PTR(:)
INTEGER, TARGET :: TARG(5)
PTR => TARG I PTR is associated with TARG and is
! assigned an array specification of (5)

PTR(1) = 5 ! TARG(1) has value of 5
PRINT *, FUNC()
CONTAINS
REAL FUNCTION FUNC()
POINTER :: FUNC I Function result is a pointer

END FUNCTION
END

Statements and Attributes 341

POINTER - Fortran 90

| IBM Extension

Example 2: Fortran 90 pointers and threadsafing

FUNCTION MYFUNC (ARG) I MYPTR is thread-specific.

INTEGER, POINTER :: MYPTR I every thread that invokes
I 'MYFUNC' will allocate a

ALLOCATE (MYPTR) 1

MYPTR = ARG !

new piece of storage that
is only accessible within

I that thread.
ANYVAR = MYPTR
END FUNCTION

| End of IBM Extension

Related Information
* [“Pointer Assignment” on page 113
+ [“TARGET” on page 373|
+ [“ALLOCATED(ARRAY) or ALLOCATED(SCALAR)” on page 432
+ ["'DEALLOCATE” on page 260)|
+ |[“Pointer Association” on page 133

+ |“Deferred-Shape Arrays” on page 70|

POINTER (integer)

| IBM Extension

Purpose

The integer POINTER statement specifies that the value of the variable int_pointer
is to be used as the address for any reference to pointee.

The name of this statement has been changed from POINTER to integer POINTER
to distinguish it from the Fortran 90 POINTER statement.

Syntax

»»—POINTER——(—int_pointer—,—pointee—)

\4
A

int_pointer
is the name of an integer pointer variable

pointee is a variable name or array declarator

Rules

The compiler does not allocate storage for the pointee. Storage is associated with
the pointee at execution time by the assignment of the address of a block of

342 XL Fortran Advanced Edition for Mac OS X: Language Reference

POINTER - integer (IBM Extension)

storage to the pointer. The pointee can become associated with either static or
dynamic storage. A reference to a pointee requires that the associated pointer be
defined.

An integer pointer is a scalar variable of type INTEGER(4) that cannot have a type
explicitly assigned to it. You can use integer pointers in any expression or
statement in which a variable of the same type as the integer pointer can be used.
You can assign any data type to a pointee, but you cannot assign a storage class or
initial value to a pointee.

An actual array that appears as a pointee in an integer POINTER statement is
called a pointee array. You can dimension a pointee array in a type declaration
statement, a[DIMENSION]| statement, or in the integer POINTER statement itself.
If you specify the -qddim compiler option, a pointee array that appears in a main
program can also have an adjustable array specification. In main programs and

subprograms, the dimension size is evaluated when the pointee is referenced
(dynamic dimensioning).

If you do not specify the -qddim compiler option, a pointee array that appears in a
subprogram can have an adjustable array specification, and the dimension size is
evaluated on entrance to the subprogram, not when the pointee is evaluated.

The following constraints apply to the definition and use of pointees and integer

pointers:

* A pointee cannot be zero-sized.

* A pointee can be scalar, an assumed-sized array or an explicit-shape array.

* A pointee cannot appear in a COMMON, DATA, NAMELIST, or
EQUIVALENCE statement.

* A pointee cannot have the following attributes: EXTERNAL, ALLOCATABLE,
POINTER, TARGET, INTRINSIC, INTENT, OPTIONAL, SAVE, STATIC,
AUTOMATIC, or PARAMETER.

* A pointee cannot be a dummy argument and therefore cannot appear in a
FUNCTION, SUBROUTINE, or ENTRY statement.

* A pointee cannot be an automatic object, though a pointee can have nonconstant
bounds or lengths.

* A pointee cannot be a generic interface block name.

* A pointee that is of derived type must be of sequence derived type.

A function value cannot be a pointee.

* An integer pointer cannot be pointed to by another pointer. (A pointer cannot be
a pointee.)

* An integer pointer cannot have the following attributes:

- ‘ALLOCATABLEl
DIMENSIONl
|EXTERNAL

— [INTRINSIC

|PARAMETE!§]

POINTER

- [TARGET|

* An integer pointer cannot appear as a NAMELIST group name.
* An integer pointer cannot be a procedure.

Statements and Attributes 343

POINTER - integer (IBM Extension)

Examples

INTEGER A,B
POINTER (P,I)
IF (A<>0) THEN
P=LOC(A)
ELSE
P=L0OC(B)
ENDIF
I=0 ! Assigns 0 to either A or B, depending on A's value
END

Related Information
» |“Integer Pointer Association” on page 134]
* ["LOC(X)” on page 482

-qddim Option|in the

| End of IBM Extension

PRINT
Pur pose
The PRINT statement is a data transfer output statement.
Syntax

»»>—PRINT name | »><

l—format

|—,—output_item_listJ

name is a[namelist] group name

output_item
is an output list item. An output list specifies the data to be transferred. An
output list item can be:

¢ A variable. An array is treated as if all of its elements were specified in
the order they are arranged in storage.

A pointer must be associated with a target, and an allocatable object
must be allocated. A derived-type object cannot have any ultimate
component that is inaccessible to this statement. The evaluation of
output_item cannot result in a derived-type object that contains a pointer.
The structure components of a structure in a formatted statement are
treated as if they appear in the order of the derived-type definition; in
an unformatted statement, the structure components are treated as a
single value in their internal representation (including padding).

* An expression.
* An implied-DO list, as described under [‘Implied-DO List” on page 345

format is a format specifier that specifies the format to be used in the output
operation. format is a format identifier that can be:
* The statement label of a FORMAT statement. The FORMAT statement
must be in the same scoping unit.

344 XL Fortran Advanced Edition for Mac OS X: Language Reference

PRINT

* The name of a scalar INTEGER(4) or INTEGER(8) variable that was
assigned the statement label of a FORMAT statement. The FORMAT
statement must be in the same scoping unit.

| Fortran 95 |

Fortran 95 does not permit assigning of a statement label.

| End of Fortran 95 |

A character constant. It cannot be a Hollerith constant. It must begin
with a left parenthesis and end with a right parenthesis. Only the format
codes described in the FORMAT statement can be used between the
parentheses. Blank characters can precede the left parenthesis, or follow
the right parenthesis.

* A character variable that contains character data whose leftmost
character positions constitute a valid format. A valid format begins with
a left parenthesis and ends with a right parenthesis. Only the format
codes listed under ["FORMAT” on page 293 can be used between the
parentheses. Blank characters can precede the left parenthesis, or follow
the right parenthesis.

* An array of noncharacter intrinsic type.

* Any character expression, except one involving concatenation of an
operand that specifies inherited length, unless the operand is the name
of a constant.

* An asterisk, specifying list-directed formatting.

. Aspecifier that specifies a previously defined namelist.

Specifying the —qport=typestmt compiler option enables the TYPE statement which
has identical functionality to the PRINT statement.

Implied-DO List

»»—(—do_object list— , —do_variable = arith_exprl, arith_expr2 >

>) <
l—,—l l—ar‘i th_expr3—|

do_object
is an output list item

do_variable
is a named scalar variable of type integer or real

arith_exprl, arith_expr2, and arith_expr3
are scalar numeric expressions

The range of an implied-DO list is the list do_object_list. The iteration count and the
values of the DO variable are established from arith_exprl, arith_expr2, and
arith_expr3, the same as for a DO statement. When the implied-DO list is executed,
the items in the do_object_list are specified once for each iteration of the
implied-DO list, with the appropriate substitution of values for any occurrence of
the DO variable.

Examples
PRINT 10, A,B,C
10 FORMAT (E4.2,G3.2E1,B3)

Statements and Attributes 345

PRINT

Related Information
* |"Understanding XL Fortran Input/Output” on page 173

* [“Input/Output Formatting” on page 187
* See the [User’s Guidd for more information on[-gqport=typestm{
* [“Deleted Features” on page 606|

PRIVATE

Purpose

The PRIVATE attribute specifies that a module entity is not accessible outside the
module through use association.

Syntax

»»—PRIVATE

\4
A

ﬁGCCESS_id_Z iSt—l

access_id
is a generic specification or the name of a variable, procedure, derived
type, constant, or namelist group

Rules
The PRIVATE attribute can appear only in the scope of a module.

Although multiple PRIVATE statements may appear in a module, only one
statement that omits an access_id_list is permitted. A PRIVATE statement without
an access_id_list sets the default accessibility to private for all potentially accessible
entities in the module. If the module contains such a statement, it cannot also
include a PUBLIC statement without an access_id_list. If the module does not
contain such a statement, the default accessibility is public. Entities whose
accessibility is not explicitly specified have default accessibility.

A procedure that has a generic identifier that is public is accessible through that
identifier, even if its specific identifier is private. If a module procedure contains a
private dummy argument or function result whose type has private accessibility,
the module procedure must be declared to have private accessibility and must not
have a generic identifier that has public accessibility.

If a PRIVATE statement is specified within a derived-type definition, all the
components of the derived type become private.

A structure must be private if its derived type is private. A namelist group must be
private if it contains any object that is private or contains private components. A
derived type that has a component of derived type that is private must itself be
private or have private components. A subprogram must be private if any of its
arguments are of a derived type that is private. A function must be private if its
result variable is of a derived type that is private.

346 XL Fortran Advanced Edition for Mac OS X: Language Reference

PRIVATE

— Attributes Compatible with the PRIVATE Attribute
* IALLOCATABLE * IPARAMETE * |STATIC
* IDIMENSIO « [POINTE * [TARGET]
* [EXTERNA * [PROTECTED, * [VOLATILE
» INTRINSI * [SAVE
Examples
MODULE MC
PUBLIC ! Default accessibility declared as public

INTERFACE GEN
MODULE PROCEDURE SUB1, SUB2
END INTERFACE
PRIVATE SUB1 ! SUB1 declared as private
CONTAINS
SUBROUTINE SUB1(I)
INTEGER I
I=1+1
END SUBROUTINE SUB1
SUBROUTINE SUB2(I,J)
I1=1+1J
END SUBROUTINE
END MODULE MC

PROGRAM ABC

USE MC

K=5

CALL GEN(K) ! SUB1 referenced because GEN has public
I accessibility and appropriate argument
I is passed

CALL SUB2(K,4)
PRINT *, K ! Value printed is 10
END PROGRAM

Related Information
* [“Derived Types” on page 33|

* [“Modules” on page 146]
+ |"'PROTECTED” on page 348|
[“PUBLIC” on page 350

PROGRAM

Purpose

The PROGRAM statement specifies that a program unit is a main program, the
program unit that receives control from the system when the executable program is
invoked at run time.

Syntax

Statements and Attributes 347

PROGRAM

»»—PROGRAM—name

A\
A

name is the name of the main program in which this statement appears

Rules
The PROGRAM statement is optional.

If specified, the PROGRAM statement must be the first statement of the main
program.

If a program name is specified in the corresponding END statement, it must match
name.

The program name is global to the executable program. This name must not be the
same as the name of any common block, external procedure, or any other program
unit in that executable program, or as any name that is local to the main program.

The name has no type, and it must not appear in any type declaration or
specification statements. You cannot refer to a main program from a subprogram or
from itself.

Examples

PROGRAM DISPLAY_NUMBER_2
INTEGER A
A=2
PRINT =, A

END PROGRAM DISPLAY_NUMBER_2

Related Information
+ |[“Main Program” on page 145|

PROTECTED

| IBM Extension |

Purpose

The PROTECTED attribute allows greater control over the modification of module
entities. A module procedure can only modify a protected module entity or its
subobjects if the same module defines both the procedure and the entity.

Syntax

The PROTECTED attribute must only appear in the specification part of the
module.

»—PROTECTED—L—_I—entity_declar‘ation_list ><

entity A named variable not in a common block.

348 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

PROTECTED

If you specify that an object declared by an EQUIVALENCE] statement has the
PROTECTED attribute, all objects specified in that EQUIVALENCE statement
must have the PROTECTED attribute.

A non-pointer object with the PROTECTED attribute accessed through use
association, is not definable.

You must not specify the PROTECTED attribute for [integer pointers,

A pointer object with the PROTECTED attribute accessed through use association,
must not appear as any of the following:

* As a pointer object in a [NULLIFY| statement or [POINTER| assignment statement
* As an allocatable object in an |ALLOCATE| or ﬁSEALLOCATﬂ statement.

¢ As an actual argument in reference to a procedure, if the associated dummy
argument is a pointer with the INTENT(INOUT) or INTENT(OUT)| attribute.

— Attributes Compatible with the PROTECTED Attribute

* DIMENSION] * [PRIVATE + [TARGET]
« [INTENT] - [PUBLIG + [VOLATILE|

Examples

In the following example, the values of both age and val can only be modified by
subroutines in the module in which they are declared:

module modl
integer, protected :: val
integer :: age
protected :: age
contains
subroutine set_val(arg)
integer arg
val = arg
end subroutine
subroutine set_age(arg)
integer arg

age = arg
end subroutine
end module
program dt_init01
use modl

implicit none

integer :: value, his_age

call set_val(88)

call set_age(38)

value = val

his_age = age

print *, value, his_age
end program

Statements and Attributes 349

PROTECTED

Related Information
[‘Modules” on page 146|

FPRIVATE” on page 344

| End of IBM Extension

PUBLIC

Purpose

The PUBLIC attribute specifies that a module entity can be accessed by other
program units through use association.

Syntax

»»—PUBLIC

v
A

Lm—access_id_l is t—l

access_id
is a generic specification or the name of a variable, procedure, derived
type, constant, or namelist group

Rules
The PUBLIC attribute can appear only in the scope of a module.

Although multiple PUBLIC statements can appear in a module, only one statement
that omits an access_id_list is permitted. A PUBLIC statement without an
access_id_list sets the default accessibility to public for all potentially accessible
entities in the module. If the module contains such a statement, it cannot also
include a PRIVATE statement without an access_id_list. If the module does not
contain a PRIVATE statement without an access_id_list, the default accessibility is
public. Entities whose accessibility is not explicitly specified have default
accessibility.

A procedure that has a generic identifier that is public is accessible through that
identifier, even if its specific identifier is private. If a module procedure contains a
private dummy argument or function result whose type has private accessibility,
the module procedure must be declared to have private accessibility and must not
have a generic identifier that has public accessibility.

| IBM Extension |

Although an entity with public accessibility cannot have the STATIC attribute,
public entities in a module are unaffected by IMPLICIT STATIC statements in the
module.

| End of IBM Extension |

350 XL Fortran Advanced Edition for Mac OS X: Language Reference

PUBLIC

— Attributes Compatible with the PUBLIC Attribute
* JALLOCATABLE * [INTRINSIC * |SAVE
» IDIMENSIO * [PARAMETE * [TARGET]
* [EXTERNA « [POINTE * [VOLATILE
* [PROTECTED,
Examples
MODULE MC
PRIVATE I Default accessibility declared as private
PUBLIC GEN ! GEN declared as public
INTERFACE GEN
MODULE PROCEDURE SUB1
END INTERFACE
CONTAINS
SUBROUTINE SUB1(I)
INTEGER I
I=1+1
END SUBROUTINE SUB1
END MODULE MC
PROGRAM ABC
USE MC
K=5
CALL GEN(K) I SUB1 referenced because GEN has public
I accessibility and appropriate argument
I is passed
PRINT *, K I Value printed is 6

END PROGRAM

Related Information
* [“PRIVATE” on page 346
* [“Modules” on page 146]|

READ

Purpose
The READ statement is the data transfer input statement.

Syntax

v
A

»»—READ name
-format

l—,—input_item_list—l
(—io_control_list—)

I—z’nput‘_item_list—|

format is a format identifier, described below under FMT=format. In addition, it
cannot be a Hollerith constant.

name is a[namelist] group name

Statements and Attributes 351

READ

input_item
is an input list item. An input list specifies the data to be transferred. An
input list item can be:

* A variable name, but not for an assumed-size array. An array is treated
as if all of its elements were specified in the order they are arranged in
storage.

A pointer must be associated with a definable target, and an allocatable
object must be allocated. A derived-type object cannot have any ultimate
component that is outside the scoping unit of this statement. The
evaluation of input_item cannot result in a derived-type object that
contains a pointer. The structure components of a structure in a
formatted statement are treated as if they appear in the order of the
derived-type definition; in an unformatted statement, the structure
components are treated as a single value in their internal representation
(including padding).

¢ An implied-DO list, as described under [“Implied-DO List” on page 355

io_control
is a list that must contain one unit specifier (UNIT=) and can also contain
one of each of the other valid specifiers described below.

[UNIT=] u
is a unit specifier that specifies the unit to be used in the input operation. u
is an external unit identifier or internal file identifier.

| IBM Extension

An external unit identifier refers to an external file. It is one of the
following:

* An integer expression whose value is in the range 0 through
2,147,483,647.

* An asterisk, which identifies external unit 5 and is preconnected to
standard input.

| End of IBM Extension

An internal file identifier refers to an internal file. It is the name of a
character variable that cannot be an array section with a vector subscript.

If the optional characters UNIT= are omitted, u must be the first item in
io_control_list. If the optional characters UNIT= are specified, either the
optional characters FMT= or the optional characters NML= must also be
present.

[FMT=] format
is a format specifier that specifies the format to be used in the input
operation. format is a format identifier that can be:
* The statement label of a FORMAT statement. The FORMAT statement
must be in the same scoping unit.

* The name of a scalar INTEGER(4) or INTEGER(8) variable that was
assigned the statement label of a FORMAT statement. The FORMAT
statement must be in the same scoping unit.

352 XL Fortran Advanced Edition for Mac OS X: Language Reference

READ

| Fortran 95 |

Fortran 95 does not permit assigning of a statement label.

| End of Fortran 95 |

* A character constant. It must begin with a left parenthesis and end with
a right parenthesis. Only the format codes described in the FORMAT
statement can be used between the parentheses. Blank characters can
precede the left parenthesis, or follow the right parenthesis.

* A character variable that contains character data whose leftmost
character positions constitute a valid format. A valid format begins with
a left parenthesis and ends with a right parenthesis. Only the format
codes listed under ["FORMAT” on page 293 can be used between the
parentheses. Blank characters can precede the left parenthesis or follow
the right parenthesis. If format is an array element, the format identifier
must not exceed the length of the array element.

* An array of noncharacter intrinsic type. The data must be a valid format
identifier as described under character array.

* Any character expression, except one involving concatenation of an
operand that specifies inherited length, unless the operand is the name
of a constant.

* An asterisk, specifying list-directed formatting.

e A specifier that specifies the name of a namelist list that you
have previously defined.

If the optional characters FMT= are omitted, format must be the second
item in io_control_list and the first item must be the unit specifier with the
optional characters UNIT= omitted. Both NML= and FMT= cannot be
specified in the same input statement.

POS=integer_expr
integer_expr is a scalar integer expression greater than 0. POS= specifies the
file position of the file storage unit to be read in a file connected for stream
access. You must not use POS= for a file that cannot be positioned.

REC= integer_expr
is a record specifier that specifies the number of the record to be read in a
file connected for direct access. The REC= specifier is only permitted for
direct input. integer_expr is an integer expression whose value is positive. A
record specifier is not valid if list-directed or namelist formatting is used
and if the unit specifier specifies an internal file. The END= specifier can
appear concurrently. The record specifier represents the relative position of
a record within a file. The relative position number of the first record is 1.
You must not specify REC= in data transfer statements that specify a unit
connected for stream access, or use the POS= specifier.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is a variable of type INTEGER(4) or default
integer. Coding the IOSTAT= specifier suppresses error messages. When
the statement finishes execution, ios is defined with:
* A zero value if no error condition, end-of-file condition, or end-of-record
condition occurs.

* A positive value if an error occurs.

Statements and Attributes 353

READ

* A negative value if an end-of-file condition is encountered and no error
occurs.

* A negative value that is different from the end-of-file value if an
end-of-record condition occurs and no error condition or end-of-file
condition occurs.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement to which control is to transfer in the case of an error. Coding the
ERR= specifier suppresses error messages.

END= stmt_label
is an end-of-file specifier that specifies a statement label at which the
program is to continue if an endfile record is encountered and no error
occurs. An external file is positioned after the endfile record; the IOSTAT=
specifier, if present, is assigned a negative value; and the NUM= specifier,
if present, is assigned an integer value. If an error occurs and the statement
contains the SIZE= specifier, the specified variable becomes defined with
an integer value. Coding the END= specifier suppresses the error message
for end-of-file. This specifier can be specified for a unit connected for either
sequential or direct access.

[NML=] name
is a specifier that specifies the name of a namelist list that you
have previously defined. If the optional characters NML=are not specified,
the namelist name must appear as the second parameter in the list and the
first item must be the unit specifier with UNIT= omitted. If both
NML=and UNIT=are specified, all the parameters can appear in any order.
The NML= specifier is an alternative to FMT=; both NML= and FMT=
cannot be specified in the same input statement.

ADVANCE-= char_expr
is an advance specifier that determines whether nonadvancing input occurs
for this statement. char_expr is a scalar character expression that must
evaluate to YES or NO. If NO is specified, nonadvancing input occurs. If
YES is specified, advancing, formatted sequential or stream input occurs.
The default value is YES. ADVANCE= can be specified only in a formatted
sequential or formatted stream READ statement with an explicit format
specification that does not specify an internal file unit specifier.

SIZE= count
is a character count specifier that determines how many characters are
transferred by data edit descriptors during execution of the current input
statement. count is a scalar variable of type default integer, type
INTEGER4) [_iBm _{ Blanks that are inserted as padding are not included
in the count.

EOR= stmt_label
is an end-of-record specifier. If the specifier is present, an end-of-record
condition occurs, and no error condition occurs during execution of the
statement. If PAD= exists, the following also occur:
1. If the PAD= specifier has the value YES, the record is padded with
blanks to satisfy the input list item and the corresponding data edit
descriptor that requires more characters than the record contains.

2. Execution of the READ statement terminates.

3. The file specified in the READ statement is positioned after the current
record.

354 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

READ

4. If the IOSTAT= specifier is present, the specified variable becomes
defined with a negative value different from an end-of-file value.

5. If the SIZE= specifier is present, the specified variable becomes defined
with an integer value.

6. Execution continues with the statement containing the statement label
specified by the EOR= specifier.

7. End-of-record messages are suppressed.

Implied-DO List

»»>—(—do_object_list— , —do_variable = arith_exprl, arith_expr2

v

>) <
l—,—l I—ari th_expr3—|

do_object
is an output list item

do_variable
is a named scalar variable of type integer or real

arith_exprl, arith_expr2, and arith_expr3
are scalar numeric expressions

The range of an implied-DO list is the list do_object_list. The iteration count and the
values of the DO variable are established from arith_expr1, arith_expr2, and
arith_expr3, the same as for a DO statement. When the implied-DO list is executed,
the items in the do_object_list are specified once for each iteration of the
implied-DO list, with the appropriate substitution of values for any occurrence of
the DO variable.

The DO variable or an associated data item must not appear as an input list item
in the do_object_list, but can be read in the same READ statement outside of the
implied-DO list.

Any statement label specified by the ERR=, EOR= and END= specifiers must refer
to a branch target statement that appears in the same scoping unit as the READ
statement.

If either the EOR= specifier or the SIZE= specifier is present, the ADVANCE=
specifier must also be present and must have the value NO.

| IBM Extension |

If a NUM= specifier is present, neither a format specifier nor a namelist specifier
can be present.

| End of IBM Extension |

Variables specified for the IOSTAT=, SIZE= and NUM= specifiers must not be
associated with any input list item, namelist list item, or the DO variable of an
implied-DO list. If such a specifier variable is an array element, its subscript values
must not be affected by the data transfer, any implied-DO processing, or the
definition or evaluation of any other specifier.

Statements and Attributes 355

READ

A READ statement without io_control_list specified specifies the same unit as a
READ statement with io_control_list specified in which the external unit identifier
is an asterisk.

If the ERR= and IOSTAT= specifiers are set and an error is encountered during a
synchronous data transfer, transfer is made to the statement specified by the ERR=
specifier and a positive integer value is assigned to ios.

| IBM Extension

If a conversion error is encountered and the CNVERR run-time option is set to
NO, ERR= is not branched to, although IOSTAT= may be set.

If IOSTAT= and ERR= are not specified,
¢ The program stops if a severe error is encountered.

* The program continues to the next statement if a recoverable error is
encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

* The program continues to the next statement when a conversion error is
encountered if the ERR_RECOVERY run-time option is set to YES. If the
CNVERR run-time option is set to YES, conversion errors are treated as
recoverable errors; if CNVERR=NO, they are treated as conversion errors.

| End of IBM Extension

Examples

INTEGER A(100)

CHARACTER*4 B

READ *, A(LBOUND(A,1):UBOUND(A,1))

READ (7,FMT='(A3)"',ADVANCE='NO',EOR=100) B

100 PRINT *, 'end of record reached'
END

Related Information
o |[Implementation Details of XL Fortran Input/Output|in the [User’s Guide|
+ |"Conditions and IOSTAT Values” on page 181]
* |"WRITE” on page 392|
« |["Understanding XL Fortran Input/Output” on page 173
« |Setting Run-time Options|in the|llser’s Guidd
+ [“Deleted Features” on page 606|

REAL

Purpose

A REAL type declaration statement specifies the length and attributes of objects
and functions of type real. Initial values can be assigned to objects.

Syntax

356 XL Fortran Advanced Edition for Mac OS X: Language Reference

REAL

»—REAL

entity_decl_list——>«

|—kind_se l ector—l

ii,—attr_spec_list—: =

where:

attr_spec

ALLOCATABLE
AUTOMATIC
DIMENSION (array_spec)
EXTERNAL

INTENT (intent_spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

kind_selector

(C B int_initialization_expr—) ><
KIND— =

(1)

* —int_literal_constant

Notes:
1 IBM Extension.

IBM Extension

specifies the length of real entities: 4, 8 or 16. int_literal_constant cannot
specify a kind type parameter.

| End of IBM Extension |

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

is the double colon separator. Use the double colon separator when you
specify attributes, =initialization_expr, or => NULLO[_rs5_4.

array_spec
is a list of dimension bounds

Statements and Attributes 357

REAL

entity_decl

»>>—q >
L (1) (2) l—(—array_spec—)—|
* len
(3) (4)
(—array_spec—)— = len
(5)

/—initial_value_list—/
= —initialization_expr

(6)

=> —NULL()

Notes:
IBM Extension.
IBM Extension.
IBM Extension.

1

2

3

4 IBM Extension.
5 IBM Extension.
6

Fortran 95.

a is an object name or function name. array_spec cannot be specified
for a function name with an implicit interface.

| IBM Extension |

len overrides the length as specified in kind_selector, and cannot specify
a kind type parameter. The entity length must be an integer literal
constant that represents one of the permissible length
specifications.

| End of IBM Extension |

| IBM Extension |

initial_value
provides an initial value for the entity specified by the immediately
preceding name.

| End of IBM Extension |

initialization_expr
provides an initial value, by means of an initialization expression,
for the entity specified by the immediately preceding name

Fortran 95

358 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

REAL

=> NULL()
provides the initial value for the pointer object

| End of Fortran 95

| Fortran 95 |

Within the context of a derived type definition:

* If => appears in a component initialization, the POINTER attribute must appear
in the attr_spec_list.

 If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

* The compiler will evaluate initialization_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.
| End of Fortran 95

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a function result, an object in a blank common
block, an integer pointer, an external name, an intrinsic name, or an automatic
object. Nor can an object be initialized if it has the AUTOMATIC attribute. The
object may be initialized if it appears in a named common block in a block data
program unit.

| IBM Extension |

The object also may be initialized if it appears in a named common block in a
module.

| End of IBM Extension |

| Fortran 95 |

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

| End of Fortran 95 |

Statements and Attributes 359

REAL

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of

a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and initialization_expr

or NULLO[_Fs5_4 is specified, the variable is initially defined.

| Fortran 95

If the entity you are declaring is a derived type component, and initialization_expr
or NULLJ() is specified, the derived type has default initialization.

| End of Fortran 95

a becomes defined with the value determined by initialization_expr, in accordance
with the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of initialization_expr

or NULL() implies that a is a saved object, except for an object
in a named common block. The initialization of an object could affect the
fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or POINTER
attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

| IBM Extension |

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

| End of IBM Extension

Examples

REAL(8), POINTER :: RPTR
REAL(8), TARGET :: RTAR

Related Information
* |"Real” on page 24|

* [“Initialization Expressions” on page 82]

* ["How Type Is Determined” on page 57) for details on the implicit typing rules

* [“Array Declarators” on page 6

360 XL Fortran Advanced Edition for Mac OS X: Language Reference

REAL

+ |”Automatic Objects” on page 22|

* |“Storage Classes for Variables” on page 62

* ["'DATA” on page 256/ for details on initial values

RECORD

| IBM Extension |

Purpose

The RECORD statement is a special form of type declaration statement. Unlike
other type declaration statements, attributes for entities declared on the RECORD
statement cannot be specified on the statement itself.

Syntax

B

»»—RECORD—/ type_name /—L—_l—record_obj_dcl_list >

record_obj_dcl:

»>—record_object_name

A\
A

I—(—army_spec-)—|

record_stmt:

»»—RECORD—"—/ type_name /—L——I—record_obj_dcl_list ><

record_obj_dcl:

»>—record_object_name ><

|—(—arr‘ay_spec—)—|

where type_name must be the name of a derived type that is accessible in the
scoping unit.

Rules
Entities cannot be initialized in a RECORD statement.

A record_stmt declares an entity to be of the derived type, specified by the
type_name that most immediately precedes it.

The RECORD keyword cannnot appear as the type_spec of an IMPLICIT or
FUNCTION statement.

Statements and Attributes 361

RECORD

Examples

In the following example, a RECORD statement is used to declare a derived type
variable.

STRUCTURE /S/
INTEGER I
END STRUCTURE
STRUCTURE /DT/
INTEGER I
END STRUCTURE
RECORD/DT/REC1,REC2,/S/REC3,REC4

Related Information

* For further information on record structures and derived types, see
[Types” on page 33|

| End of IBM Extension

RETURN

Purpose

The RETURN statement:

* In a function subprogram, ends the execution of the subprogram and returns
control to the referencing statement. The value of the function is available to the
referencing procedure.

* In a subroutine subprogram, ends the subprogram and transfers control to the
first executable statement after the procedure reference or to an alternate return
point, if one is specified.

| IBM Extension

* In the main program, ends execution of the executable program.

| End of IBM Extension

Syntax

»>—RETURN >

(1)

Lyri th_expr

Notes:

1 Real or complex expressions are an IBM Extension.

arith_expr
is a scalar integer, real, or complex expression. If the value of the
expression is noninteger, it is converted to INTEGER(4) before use.
arith_expr cannot be a Hollerith constant.

362 XL Fortran Advanced Edition for Mac OS X: Language Reference

RETURN

Rules

arith_expr can be specified in a subroutine subprogram only, and it specifies an
alternate return point. Letting m be the value of arith_expr, if 1 = m = the number of
asterisks in the[SUBROUTINE| or [ENTRY] statement, the mth asterisk in the
dummy argument list is selected. Control then returns to the invoking procedure at
the statement whose statement label is specified as the mth alternate return
specifier in the CALL statement. For example, if the value of m is 5, control returns
to the statement whose statement label is specified as the fifth alternate return
specifier in the CALL statement.

If arith_expr is omitted or if its value (m) is not in the range 1 through the number
of asterisks in the SUBROUTINE or ENTRY statement, a normal return is
executed. Control returns to the invoking procedure at the statement following the
CALL statement.

Executing a RETURN statement terminates the association between the dummy
arguments of the subprogram and the actual arguments supplied to that instance
of the subprogram. All entities local to the subprogram become undefined, except
as noted under [“Events Causing Undefinition” on page 60.|

A subprogram can contain more than one RETURN statement, but it does not
require one. An END statement in a function or subroutine subprogram has the
same effect as a RETURN statement.

Examples

CALL SUB(A,B)
CONTAINS
SUBROUTINE SUB(A,B)
INTEGER :: A,B
IF (A.LT.B)
RETURN I Control returns to the calling procedure
ELSE

END IF
END SUBROUTINE
END

Related Information

* |”Asterisks as Dummy Arguments” on page 164

* [“Actual Argument Specification” on page 153|for a description of alternate
return points

« |"Events Causing Undefinition” on page 60|

REWIND

Purpose

The REWIND statement positions an external file connected for sequential access
at the beginning of the first record of the file. For stream access, the REWIND
statement positions a file at its initial point.

Syntax

Statements and Attributes 363

REWIND

»»>—REWIND U
|—(—position_l ist—)—l

A\
A

u is an external unit identifier. The value of # must not be an asterisk or a
Hollerith constant.

position_list
is a list that must contain one unit specifier ((UNIT=]u) and can also
contain one of each of the other valid specifiers. The valid specifiers are:

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file
that is represented by a scalar integer expression, whose value is in the
range 1 through 2,147,483,647. If the optional characters UNIT= are
omitted, # must be the first item in position_list.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is a scalar variable of type INTEGER(4) or
default integer. When the REWIND statement finishes executing, ios is
defined with:
* A zero value if no error condition occurs
* A positive value if an error occurs.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

Rules

If the unit is not connected, an implicit OPEN specifying sequential access is
performed to a default file named fort.n, where 7 is the value of u with leading
zeros removed. If the external file connected to the specified unit does not exist,
the REWIND statement has no effect. If it exists, an end-of-file marker is created, if
necessary, and the file is positioned at the beginning of the first record. If the file is
already positioned at its initial point, the REWIND statement has no effect. The
REWIND statement causes a subsequent [READ| or [WRITH statement referring to u
to read data from or write data to the first record of the external file associated
with u.

If the ERR= and IOSTAT= specifiers are set and an error is encountered, transfer is
made to the statement specified by the ERR= specifier and a positive integer value
is assigned to ios.

| IBM Extension |

If IOSTAT= and ERR= are not specified,

* the program stops if a severe error is encountered.

* the program continues to the next statement if a recoverable error is encountered
and the ERR_RECOVERY run-time option is set to YES. If the option is set to
NO, the program stops.

| End of IBM Extension

364 XL Fortran Advanced Edition for Mac OS X: Language Reference

REWIND

Examples
REWIND (9, IOSTAT=I0SS)

Related Information
+ |“Conditions and IOSTAT Values” on page 181
* [“Understanding XL Fortran Input/Output” on page 173|

* |Setting Run-time Options|in thelUser’s Guidgl

SAVE

Purpose

The SAVE attribute specifies the names of objects and named common blocks
whose definition status you want to retain after control returns from the
subprogram where you define the variables and named common blocks.

Syntax

\4
A

»>—SAVE

r

—l___I_EObj ect_name J
s /—common_block_name—/

Rules

A SAVE statement without a list is treated as though it contains the names of all
common items and local variables in the scoping unit. A common block name
having the SAVE attribute has the effect of specifying all the entities in that named
common block.

Within a function or subroutine subprogram, a variable whose name you specify
with the SAVE attribute does not become undefined as a result of a RETURN or
END statement in the subprogram.

object_name cannot be the name of a dummy argument, pointee, procedure,
automatic object, or common block entity.

If a local entity specified with the SAVE attribute (and not in a common block) is
in a defined state at the time that a RETURN or END statement is encountered in
a subprogram, that entity is defined with the same value at the next reference of
that subprogram. Saved objects are shared by all instances of the subprogram.

| IBM Extension |

XL Fortran permits function results to have the SAVE attribute. To indicate that a
function result is to have the SAVE attribute, the function result name must be
explicitly specified with the SAVE attribute. That is, a SAVE statement without a
list does not provide the SAVE attribute for the function result.

| End of IBM Extension |

Statements and Attributes 365

SAVE

— Attributes Compatible with the SAVE Attribute

* JALLOCATABLE . * [STATIC
* [IDIMENSION * [PROTECTED * [TARGET
* [POINTE * [PUBLIC * [VOLATILE

=
I%
-
t

Examples

LOGICAL :: CALLED=.FALSE.
CALL SUB(CALLED)
CALLED=.TRUE.
CALL SUB(CALLED)
CONTAINS
SUBROUTINE SUB(CALLED)
INTEGER, SAVE :: J
LOGICAL :: CALLED
IF (CALLED.EQV..FALSE.) THEN
J=2
ELSE
J=J+1
ENDIF
PRINT *, J I Qutput on first call is 2
I Output on second call is 3
END SUBROUTINE
END

Related Information
+ ["COMMON” on page 247
+ |“Definition Status of Variables” on page 57|
+ |“Storage Classes for Variables” on page 62|
+ Item 2 under [Appendix A, “Compatibility Across Standards,” on page 603

SELECT CASE

Purpose

The SELECT CASE statement is the first statement of a CASE construct. It
provides a concise syntax for selecting, at most, one of a number of statement
blocks for execution.

Syntax

> SELECT CASE—(—case_expr—)

l—case_construct_name—:—l

case_construct_name
is a name that identifies the CASE construct

case_expr
is a scalar expression of type integer, character or logical

366 XL Fortran Advanced Edition for Mac OS X: Language Reference

SELECT CASE

Rules

When a SELECT CASE statement is executed, the case_expr is evaluated. The
resulting value is called the case index, which is used for evaluating control flow
within the case construct.

If the case_construct_name is specified, it must appear on the END CASE statement
and optionally on any CASE statements within the construct.

| IBM Extension |

The case_expr must not be a typeless constant or a BYTE data object.

| End of IBM Extension |

Examples
ZERO: SELECT CASE(N) ! start of CASE construct ZERO

CASE DEFAULT ZERO
OTHER: SELECT CASE(N) ! start of CASE construct OTHER
CASE(:-1)
SIGNUM = -1
CASE(1:) OTHER
SIGNUM = 1
END SELECT OTHER
CASE (0)
SIGNUM = 0

END SELECT ZERO

Related Information
« [“CASE Construct” on page 119
* [“CASE” on page 23§
« [“END (Construct)” on page 277, for details on the END SELECT statement

SEQUENCE

Purpose

The SEQUENCE statement specifies that the order of the components in a
derived-type definition establishes the storage sequence for objects of that type.
Such a type becomes a sequence derived type.

Syntax

A\
A

»>—SEQUENCE

Rules
The SEQUENCE statement can be specified only once in a derived-type definition.

If a component of a sequence derived type is of derived type, that derived type
must also be a sequence derived type.

Statements and Attributes 367

SEQUENCE

| IBM Extension

The size of a sequence derived type is equal to the number of bytes of storage
needed to hold all of the components of that derived type.

| End of IBM Extension

Use of sequence derived types can lead to misaligned data, which can adversely
affect the performance of a program.

Examples
TYPE PERSON
SEQUENCE
CHARACTER*1 GENDER I Offset O
INTEGER(4) AGE I Offset 1
CHARACTER(30) NAME I Offset 5

END TYPE PERSON

Related Information
+ [“Derived Types” on page 33|

+ |[“Derived Type” on page 261|
+ |“END TYPE” on page 280|

Statement Function

Purpose

A statement function defines a function in a single statement.

Syntax

»>—name— (

\4
A

_|)— = —scalar_expression
|—dummy_ar‘gumen t list

name is the name of the statement function. It must not be supplied as a
procedure argument.

dummy_argument
can only appear once in the dummy argument list of any statement
function. The dummy arguments have the scope of the statement function
statement, and the same types and type parameters as the entities of the
same names in the scoping unit containing the statement function.

Rules

A statement function is local to the scoping unit in which it is defined. It must not
be defined in the scope of a module.

name determines the data type of the value returned from the statement function. If
the data type of name does not match that of the scalar expression, the value of the
scalar expression is converted to the type of name in accordance with the rules for
assignment statements.

368 XL Fortran Advanced Edition for Mac OS X: Language Reference

Statement Function

The names of the function and all the dummy arguments must be specified,
explicitly or implicitly, to be scalar data objects.

The scalar expression can be composed of constants, references to variables,
references to functions and function dummy procedures, and intrinsic operations.
If the expression contains a reference to a function or function dummy procedure,
the reference must not require an explicit interface, the function must not require
an explicit interface or be a transformational intrinsic, and the result must be
scalar. If an argument to a function or function dummy procedure is array-valued,
it must be an array name.

| IBM Extension |

With XL Fortran, the scalar expression can also reference a structure constructor.

| End of IBM Extension |

The scalar expression can reference another statement function that is either:
* Declared previously in the same scoping unit, or
* Declared in the host scoping unit.

Named constants and arrays whose elements are referenced in the expression must
be declared earlier in the scoping unit or be made accessible by use or host
association.

Variables that are referenced in the expression must be either:
* Dummy arguments of the statement function, or

* Accessible in the scoping unit

If an entity in the expression is typed by the implicit typing rules, its type must
agree with the type and type parameters given in any subsequent type declaration
statement.

An external function reference in the scalar expression must not cause any dummy
arguments of the statement function to become undefined or redefined.

If the statement function is defined in an internal subprogram and if it has the
same name as an accessible entity from the host, precede the statement function
definition with an explicit declaration of the statement function name. For example,
use a type declaration statement.

The length specification for a statement function of type character or a statement
function dummy argument of type character must be a constant specification
expression.

Examples

PARAMETER (PI = 3.14159)

REAL AREA,CIRCUM,R,RADIUS

AREA(R) = PI % (R*%2) ! Define statement functions
CIRCUM(R) = 2 = PI = R ! AREA and CIRCUM

I Reference the statement functions

PRINT =,'The area is: ',AREA(RADIUS)
PRINT *,'The circumference is: ',CIRCUM(RADIUS)

Statements and Attributes 369

Statement Function

Related Information
* ["Dummy Arguments” on page 155|

* [“Function Reference” on page 151

* [“How Type Is Determined” on page 57/ for information on how the type of the
statement function is determined

STATIC

| IBM Extension

Purpose

The STATIC attribute specifies that a variable has a storage class of static; that is,
the variable remains in memory for the duration of the program and its value is
retained between calls to the procedure.

Syntax

»—STATIC—L—_I—'stat_variable B] <
o /—initial_value_list—/

stat_variable
is a variable name or an array declarator that can specify an
explicit_shape_spec_list or a deferred_shape_spec_list.

initial_value
provides an initial value for the variable specified by the immediately
preceding name. Initialization occurs as described in[“DATA” on page 256)

Rules

If stat_variable is a result variable, it must not be of type character or of derived
type. Dummy arguments, automatic objects and pointees must not have the
STATIC attribute. A variable that is explicitly declared with the STATIC attribute
cannot be a common block item.

A variable must not have the STATIC attribute specified more than once in the
same scoping unit.

Local variables have a default storage class of automatic. See the in
the for details on the default settings with regard to the invocation
commands.

— Attributes Compatible with the STATIC Attribute

* [ALLOCATABLE * [PRIVATE * [TARGET
» [DIMENSION * [PROTECTED * [VOLATILE
* [POINTE * [SAV.

370 XL Fortran Advanced Edition for Mac OS X: Language Reference

STATIC (IBM Extension)

Examples

LOGICAL :: CALLED=.FALSE.
CALL SUB(CALLED)
CALLED=.TRUE.
CALL SUB(CALLED)
CONTAINS
SUBROUTINE SUB(CALLED)
INTEGER, STATIC :: J
LOGICAL :: CALLED
IF (CALLED.EQV..FALSE.) THEN
J=2
ELSE
J=J+1
ENDIF
PRINT *, J I Qutput on first call is 2
I Qutput on second call is 3
END SUBROUTINE
END

Related Information
+ [“Storage Classes for Variables” on page 62|
+ [“COMMON” on page 247]

| End of IBM Extension

STOP

Purpose

When the STOP statement is executed, the program stops executing and, if a
character constant or digit string is specified, prints the keyword STOP followed
by the constant or digit string to unit 0.

Syntax

»>—STOP ><
i:char_constanj
digit_string

char_constant
is a scalar character constant that is not a Hollerith constant

digit_string
is a string of one through five digits

Rules

| IBM Extension |

If neither char_constant nor digit_string are specified, nothing is printed to standard
error (unit 0).

| End of IBM Extension |

Statements and Attributes 371

STOP

A STOP statement cannot terminate the range of a [DO|or [DO WHILE| construct.

If you specify digit_string, XL Fortran sets the system return code to @

IBM Extension

(digit_string,256). The system return code is available in the Korn shell command
variable $?.

End of IBM Extension

Examples
STOP 'Abnormal Termination' ! Qutput: STOP Abnormal Termination
END
STOP ! No output
END
SUBROUTINE
Purpose
The SUBROUTINE statement is the first statement of a subroutine subprogram.
Syntax
> SUBROUTINE—nanme >
I—prefix—l |—(C 5)_l
dummy_argument_list
prefix is one of the following;:
. ELEMENTAL
. PURE
¢ RECURSIVE
Note: type_spec is not permitted as a prefix in a subroutine.
name is the name of the subroutine subprogram
Rules

At most one of each kind of prefix can be specified.

The subroutine name cannot appear in any other statement in the scope of the

subroutine, unless recursion has been specified.

The RECURSIVE keyword must be specified if, directly or indirectly,
* The subroutine invokes itself.

* The subroutine invokes a procedure defined by an ENTRY statement in the
same subprogram.

* An entry procedure in the same subprogram invokes itself.

372 XL Fortran Advanced Edition for Mac OS X: Language Reference

SUBROUTINE

* An entry procedure in the same subprogram invokes another entry procedure in
the same subprogram.

* An entry procedure in the same subprogram invokes the subprogram defined by
the SUBROUTINE statement.

If the RECURSIVE keyword is specified, the procedure interface is explicit within
the subprogram.

| Fortran 95 |

Using the PURE or ELEMENTAL prefix indicates that the subroutine may be
invoked by the compiler in any order as it is free of side effects.For elemental
procedures, the keyword ELEMENTAL must be specified. If the ELEMENTAL
keyword is specified, the RECURSIVE keyword cannot be specified.

| End of Fortran 95 |

| IBM Extension |

You can also call external procedures recursively when you specify the -qrecur
compiler option, although XL Fortran disregards this option if the SUBROUTINE
statement specifies the RECURSIVE keyword.

| End of IBM Extension |

Examples
RECURSIVE SUBROUTINE SUB(X,Y)
INTEGER X,Y
IF (X.LT.Y) THEN
RETURN
ELSE
CALL SUB(X,Y+1)
END IF

END SUBROUTINE SUB

Related Information

* [“Function and Subroutine Subprograms” on page 150|

* ["Dummy Arguments” on page 155|

« |"Recursion” on page 166|

* [“CALL” on page 237

* ["ENTRY” on page 283

+ ["RETURN” on page 362

+ [“Definition Status of Variables” on page 57|

* |“Pure Procedures” on page 167,

* |-qrecur Option|in the [User’s Guide]

TARGET

Purpose
Data objects with the TARGET attribute can be associated with pointers.

Statements and Attributes 373

TARGET

Syntax

»»—TARG ET—L—_I—'variabZe_name B B
e (—array_spec—)

v
A

Rules

If a data object has the TARGET attribute, then all of the data object’s nonpointer
subobjects will also have the TARGET attribute.

A data object that does not have the TARGET attribute cannot be associated with
an accessible pointer.

A target cannot appear in an EQUIVALENCE statement.

| IBM Extension

A target cannot be an integer pointer or a pointee.

| End of IBM Extension

— Attributes Compatible with the TARGET Attribute

+ [AUTOMATIC + [PRIVATE * [STATIC
. « [PUBLIC + [VOLATILE

Examples
REAL, POINTER :: A,B
REAL, TARGET C=3.14
B =>C
A=>8B ! A points to C

Related Information

+ [“POINTER (Fortran 90)” on page 340

* ["ALLOCATED(ARRAY) or ALLOCATED(SCALAR)” on page 432|
« ["'DEALLOCATE” on page 260

+ |[“Pointer Assienment” on page 113|

+ |[“Pointer Association” on page 133

TYPE

Purpose

A TYPE type declaration statement specifies the type and attributes of objects and
functions of derived type. Initial values can be assigned to objects.

374 XL Fortran Advanced Edition for Mac OS X: Language Reference

TYPE

Syntax

»»>—TYPE—(—type_name—) entity decl list————»<

iz,—attr_spec_list—: —

where:

attr_spec

ALLOCATABLE
AUTOMATIC
DIMENSION (array_spec)
EXTERNAL

INTENT (intent_spec)
INTRINSIC
OPTIONAL
PARAMETER
POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

type_name
is the name of a derived type

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

is the double colon separator. It is required if attributes are specified, =

initialization_expr is used, or =>NULL() appears as part
of any entity_decl.

array_spec
is a list of dimension bounds

entity_decl

»>—(Q >«
l—(—array_spec—)—l (1)
/—initial_value_list—/
= —initialization_expr
(2)
=> —NULL()
Notes:

1 IBM Extension.
2 Fortran 95.

Statements and Attributes 375

TYPE

a is an object name or function name. array_spec cannot be specified for a
function with an implicit interface.

| IBM Extension |

initial_value
provides an initial value for the entity specified by the immediately
preceding name. Initialization occurs as described in[“DATA” on page 256)

| End of IBM Extension |

initialization_expr
provides an initial value, by means of an initialization expression, for the
entity specified by the immediately preceding name

| Fortran 95 |

=> NULL()
provides the initial value for a pointer object

| End of Fortran 95

Rules

| Fortran 95 |

Within the context of a derived type definition:

* If => appears in a component initialization, the POINTER attribute must appear
in the attr_spec_list.

* If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

* The compiler will evaluate initialization_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.
| End of Fortran 95 |

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

Once a derived type has been defined, you can use it to define your data items
using the TYPE type declaration statement. When an entity is explicitly declared to
be of a derived type, that derived type must have been previously defined in the
scoping unit or is accessible by use or host association.

The data object becomes an object of derived type or a structure. Each structure
component is a subobject of the object of derived type.

If you specify the DIMENSION attribute, you are creating an array whose
elements have a data type of that derived type.

376 XL Fortran Advanced Edition for Mac OS X: Language Reference

TYPE

Other than in specification statements, you can use objects of derived type as
actual and dummy arguments, and they can also appear as items in input/output
lists (unless the object has a component with the POINTER attribute), assignment
statements, structure constructors, and the right side of a statement function
definition. If a structure component is not accessible, a derived-type object cannot
be used in an input/output list or as a structure constructor.

Objects of nonsequence derived type cannot be used as data items in
EQUIVALENCE and COMMON statements. Objects of nonsequence data types
cannot be integer pointees.

A nonsequence derived-type dummy argument must specify a derived type that is
accessible through use or host association to ensure that the same derived-type
definition defines both the actual and dummy arguments.

The type declaration statement overrides the implicit type rules in effect.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, allocatable object, function result, object in a blank common block,
integer pointer, external name, intrinsic name, or automatic object. Nor can an
object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit

or if it appears in a named common block in a module.

| Fortran 95 |

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

| End of Fortran 95 |

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of

a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and initialization_expr

or NULLO[_rs5_4 is specified, the variable is initially defined.

| Fortran 95 |

If the entity you are declaring is a derived type component, and initialization_expr
or NULL() is specified, the derived type has default initialization.

| End of Fortran 95 |

a becomes defined with the value determined by initialization_expr, in accordance
with the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of initialization_expr

Statements and Attributes 377

TYPE

or NULL() implies that a is a saved object, except for an object

in a named common block. The initialization of an object could affect the
fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCTABLE or POINTER
attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function. The derived type can be specified on the
FUNCTION statement, provided the derived type is defined within the body of
the function or is accessible via host or use association.

| IBM Extension

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

| End of IBM Extension

Examples

TYPE PEOPLE ! Defining derived type PEOPLE
INTEGER AGE
CHARACTER*20 NAME

END TYPE PEOPLE

TYPE(PEOPLE) :: SMITH = PEOPLE(25,'John Smith')

END

Related Information
* |"Derived Types” on page 33|

* [“Derived Type” on page 261

+ |“Initialization Expressions” on page 87|

* [“How Type Is Determined” on page 57) for details on the implicit typing rules

* [“Array Declarators” on page 67|

« |”Automatic Objects” on page 22|

» |“Storage Classes for Variables” on page 62|

Type Declaration

Purpose

A type declaration statement specifies the type, length, and attributes of objects
and functions. Initial values can be assigned to objects.

378 XL Fortran Advanced Edition for Mac OS X: Language Reference

Type Declaration

Syntax
»>—type_spec i: entity_decl_list ><
,—attr_spec_list—::~
where:
type_spec attr_spec
* BYTE * JALLOCATABLE
e CHARACTER [char_selector] * JAUTOMATIC
* COMPLEX [kind_selector] * IDIMENSION]|(array_spec)
* DOUBLE COMPLEX * [EXTERNA
* DOUBLE PRECISION » [INTENT)|(intent_spec)
e INTEGER [kind_selector] * [INTRINSIC
e LOGICAL [kind_selector] * |OPTIONAL
e REAL [kind_selector] * IPARAMETE
e TYPE (type_name) * POINTER
* [PRIVATE
* [PROTECTED
* [PUBLIC
* |SAVE
* |STATIC
* [TARGE
* |[VALUE
* [VOLATILE
Notes:

1. IBM Extension.

type_name
is the name of a derived type

kind_selector

A\
A

(|_ _| int_initialization_expr—)
KIND— =

(1)

* —int_literal_constant

Notes:
1 IBM Extension.

represents one of the permissible length specifications for its associated

type.

Statements and Attributes 379

Type Declaration

| IBM Extension |

int_literal_constant cannot specify a kind type parameter.

| End of IBM Extension |

char_selector

specifies the character length

| IBM Extension |

In XL Fortran, this is the number of characters between 0 and 256 MB.
Values exceeding 256 MB are set to 256 MB, while negative values result in
a length of zero. If not specified, the default length is 1. The kind type
parameter, if specified, must be 1, which specifies the ASCII character
representation.

| End of IBM Extension |

A\
A

»»——(——LEN—=—type_param_value—,—KIND—=—int_init_expr)

—type_param_value—,—l_—_l—int_ini t_expr——
KIND—=

—KIND—=—int_init_expr

l—,—LEN—=—type_param_value—|

—L—_I—type_param_value
LEN—=

—+«—char_length |_ _|

type_param_value

is a specification expression or an asterisk (¥)
int_init_expr

is a scalar integer initialization expression that must evaluate to 1
char_length

is either a scalar integer literal constant (which cannot specify a
kind type parameter) or a type_param_value enclosed in parentheses

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

is the double colon separator. Use the double colon separator when you
specify attributes, =initialization_expr, or => NULLO[_Ff95_4.

array_spec
is a list of dimension bounds.

entity_decl

380 XL Fortran Advanced Edition for Mac OS X: Language Reference

Type Declaration

»>—(Q-

v

I— * —char_lengt‘h—| l—(—array_spec—)—l
(—array_spec—)— * —char_length

\
A\
A

(1)
/—initial_value_list—/
= —initialization_expr
(2)

=> —NULL()
Notes:
1 IBM Extension
2 Fortran 95

a is an object name or function name. array_spec cannot be specified

for a function with an implicit interface.

| IBM Extension |

char_length
overrides the length as specified in kind_selector and char_selector,
and is only permitted in statements where the length can be
specified with the initial keyword. A character entity can specify
char_length, as defined above. A noncharacter entity can only
specify an integer literal constant that represents one of the
permissible length specifications for its associated type.

| End of IBM Extension |

| IBM Extension |

initial_value
provides an initial value for the entity specified by the immediately
preceding name.

| End of IBM Extension |

initialization_expr
provides an initial value, by mean of an initialization expression,
for the entity specified by the immediately preceding name.

| Fortran 95

=> NULL()
provides the initial value for the pointer object.

| End of Fortran 95

Statements and Attributes 381

Type Declaration

Rules

| Fortran 95 |

Within the context of a derived type definition:

* If => appears in a component initialization, the POINTER attribute must appear
in the attr_spec_list.

 If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

* The compiler will evaluate initialization_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.
| End of Fortran 95 |

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, allocatable object, function result, object in a blank common block,
integer pointer, external name, intrinsic name, or automatic object. Nor can an
object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit

or if it appears in a named common block in a module.

| Fortran 95 |

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULLJ().

| End of Fortran 95 |

The specification expression of a type_param_value or an array_spec can be a
nonconstant expression if the specification expression appears in an interface body
or in the specification part of a subprogram. Any object being declared that uses
this nonconstant expression and is not a dummy argument or a pointee is called an
automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and initialization_expr

or NULL(O[_Fe5_4 is specified, the variable is initially defined.

382 XL Fortran Advanced Edition for Mac OS X: Language Reference

Type Declaration

| Fortran 95 |

If the entity you are declaring is a derived type component, and initialization_expr
or NULL() is specified, the derived type has default initialization.

| End of Fortran 95 |

a becomes defined with the value determined by initialization_expr, in accordance
with the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of initialization_expr

or NULLO[_r95_4 implies that a is a saved object, except for an object in
a named common block. The initialization of an object could affect the
fundamental storage class of an object.

An array_spec specified in an entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or POINTER
attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

| IBM Extension |

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

| End of IBM Extension

The optional comma after char_length in a CHARACTER type declaration
statement is permitted only if no double colon separator (::) appears in the
statement.

If the CHARACTER type declaration statement is in the scope of a module, block
data program unit, or main program, and you specify the length of the entity as an
inherited length, the entity must be the name of a named character constant. The

character constant assumes the length of its corresponding expression defined by
the PARAMETER attribute.

If the CHARACTER type declaration statement is in the scope of a procedure and
the length of the entity is inherited, the entity name must be the name of a dummy
argument or a named character constant. If the statement is in the scope of an
external function, it can also be the function or entry name in a FUNCTION or
ENTRY statement in the same program unit. If the entity name is the name of a
dummy argument, the dummy argument assumes the length of the associated
actual argument for each reference to the procedure. If the entity name is the name
of a character constant, the character constant assumes the length of its
corresponding expression defined by the PARAMETER attribute. If the entity
name is a function or entry name, the entity assumes the length specified in the
calling scoping unit.

Statements and Attributes 383

Type Declaration

The length of a character function is either a specification expression (which must
be a constant expression if the function type is not declared in an interface block)
or it is an asterisk, indicating the length of a dummy procedure name. The length
cannot be an asterisk if the function is an internal or module function, if it is
recursive, or if it returns array or pointer values.

Examples

CHARACTER (KIND=1,LEN=6) APPLES /'APPLES'/
CHARACTER+7, TARGET :: ORANGES = 'ORANGES'
CALL TEST(APPLES)

END

SUBROUTINE TEST(VARBL)
CHARACTER* (%), OPTIONAL :: VARBL ! VARBL inherits a length of 6

COMPLEX, DIMENSION (2,3) :: ABC(3) ! ABC has 3 (not 6) array elements
REAL, POINTER :: XCONST

TYPE PEOPLE ! Defining derived type PEOPLE
INTEGER AGE
CHARACTER*20 NAME
END TYPE PEOPLE
TYPE(PEOPLE) :: SMITH = PEOPLE(25,'John Smith')
END

Related Information

“Data Types and Data Objects” on page 21|

+ |“Initialization Expressions” on page 87]

* |[“How Type Is Determined” on page 57 for details on the implicit typing rules
* |“Array Declarators” on page 6
* [“Automatic Objects” on page 22|

+ |“Storage Classes for Variables” on page 62|

» |"DATA” on page 256/ for details on initial values

USE

384

Purpose

The USE statement is a module reference that provides local access to the public
entities of a module.

Syntax

»>—USE—module_name

A\
A

,—rename_list

,—ONLY—:
|—only_l istJ

rename is the assignment of a local name to an accessible data entity: local_name
=> use_name

only is a rename, a generic specification, or the name of a variable, procedure,
derived type, named constant, or namelist group

XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

USE

The USE statement can only appear prior to all other statements in
specification_part. Multiple USE statements may appear within a scoping unit.

| IBM Extension |

At the time the file containing the USE statement is being compiled, the specified
module must precede the USE statement in the file or the module must have been
already compiled in another file. Each referenced entity must be the name of a
public entity in the module.

| End of IBM Extension |

Entities in the scoping unit become use-associated with the module entities, and the
local entities have the attributes of the corresponding module entities.

In addition to the PRIVATE attribute, the ONLY clause of the USE statement
provides further constraint on which module entities can be accessed. If the ONLY
clause is specified, only entities named in the only_list are accessible. If no list
follows the keyword, no module entities are accessible. If the ONLY clause is
absent, all public entities are accessible.

If a scoping unit contains multiple USE statements, all specifying the same
module, and one of the statements does not include the ONLY clause, all public
entities are accessible. If each USE statement includes the ONLY clause, only those
entities named in one or more of the only_lists are accessible.

You can rename an accessible entity for local use. A module entity can be accessed
by more than one local name. If no renaming is specified, the name of the
use-associated entity becomes the local name. The local name of a use-associated
entity cannot be redeclared. However, if the USE statement appears in the scoping
unit of a module, the local name can appear in a PUBLIC or PRIVATE statement.

If multiple generic interfaces that are accessible to a scoping unit have the same
local name, operator, or assignment, they are treated as a single generic interface.
In such a case, one of the generic interfaces can contain an interface body to an
accessible procedure with the same name. Otherwise, any two different
use-associated entities can only have the same name if the name is not used to
refer to an entity in the scoping unit. If a use-associated entity and host entity
share the same name, the host entity becomes inaccessible through host association
by that name.

A module must not reference itself, either directly or indirectly. For example,
module X cannot reference module Y if module Y references module X.

Consider the situation where a module (for example, module B) has access through
use association to the public entities of another module (for example, module A).
The accessibility of module B’s local entities (which includes those entities that are
use-associated with entities from module A) to other program units is determined
by the PRIVATE and PUBLIC attributes, or, if absent, through the default
accessibility of module B. Of course, other program units can access the public
entities of module A directly.

Statements and Attributes 385

USE

Examples

MODULE A
REAL :: X=5.0
END MODULE A
MODULE B
USE A
PRIVATE :: X I X cannot be accessed through module B
REAL :: C=80, D=50
END MODULE B
PROGRAM TEST
INTEGER :: TX=7
CALL SuUB
CONTAINS

SUBROUTINE SUB
USE B, ONLY : C

USE B, T1 => C

USE B, TX => C I C is given another Tocal name

USE A

PRINT *, TX I Value written is 80 because use-associated

I entity overrides host entity
END SUBROUTINE
END

Related Information

* [“Modules” on page 146

+ |"PRIVATE” on page 346

+ [“PUBLIC” on page 350|

[“Order of Statements and Execution Sequence” on page 19

VALUE

| IBM Extension

Purpose

The VALUE attribute specifies an argument association between a dummy and an
actual argument. This association allows you to pass the dummy argument with
the value of the actual argument. This pass by value implementation from the
Fortran 2003 Draft Standard provides a standard conforming option to the
built-in function.

An actual argument and the associated dummy argument can change
independently. Changes to the value or definition status of the dummy argument
do not affect the actual argument. A dummy argument with the VALUE attribute
becomes associated with a temporary variable with an initial value identical to the
value of the actual argument.

Syntax

»»—VALU E—L—_I—dumm y_argument_name_list ><

386 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

VALUE

You must specify the VALUE attribute for dummy arguments only.

You must not use the [% VAL or [%REF built-in functions to reference a dummy
argument with the VALUE attribute, or the associated actual argument.

A referenced procedure that has a dummy argument with the VALUE attribute
must have an explicit interface.

A dummy argument with the VALUE attribute can be of character type if you omit
the length parameter or specify it using an intitalization expression with a value of
1.

You must not specify the VALUE attribute with the following:
e Arrays
¢ Derived types with (ALLOCATABLE components

* Dummy procedures

Attributes Compatible with the VALUE Attribute

If a dummy argument has both the VALUE and [TARGET] attributes, any pointers
associated with that dummy argument become undefined after the execution of the
procedure.

Examples

Program validexml
integer :: x = 10, y = 20
print *, 'before calling: ', x, y
call intersub(x, y)
print =, 'after calling: ', X, y

contains
subroutine intersub(x,y)
integer, value :: x
integer y
X=x+ty
y = x*y
print *, 'in subroutine after changing: ', x, vy
end subroutine
end program validexml

Expected output:

before calling: 10 20
in subroutine after changing: 30 600
after calling: 10 600

Related Information

For more information, see the built-in function.

| End of IBM Extension

Statements and Attributes 387

VIRTUAL

VIRTUAL
| IBM Extension
Purpose
The VIRTUAL statement specifies the name and dimensions of an array. It is an
alternative form of the DIMENSION| statement, although there is no VIRTUAL
attribute.
Syntax
»>—VIRTUAL—array_declarator_list >
Rules
| IBM Extension
You can specify arrays with a maximum of 20 dimensions
| End of IBM Extension
Only one array specification for an array name can appear in a scoping unit.
Examples

VIRTUAL A(10), ARRAY(5,5,5), LIST(10,100)

VIRTUAL ARRAY2(1:5,1:5,1:5), LIST2(I,M) ! adjustable array
VIRTUAL B(0:24), C(-4:2), DATA(0:9,-5:4,10)

VIRTUAL ARRAY (M*N=*J,=) I assumed-size array

Related Information

e |“Array Concepts” on page 6
* |"DIMENSION” on page 262

| End of IBM Extension

VOLATILE

| IBM Extension

Purpose

The VOLATILE attribute is used to designate a data object as being mapped to
memory that can be accessed by independent input/output processes. Code that
manipulates volatile data objects is not optimized.

Syntax

388 XL Fortran Advanced Edition for Mac OS X: Language Reference

Rules

VOLATILE (IBM Extension)

»—VOLATILE Y _—variable_name ><
|:: ::| E/—common_b lock_name—/—
derived_type_name————

If an array name is declared volatile, each element of the array is considered
volatile. If a common block is declared volatile, each variable in the common block
is considered volatile. An element of a common block can be declared volatile
without affecting the status of the other elements in the common block.

If a common block is declared in multiple scopes, and if it (or one or more of its
elements) is declared volatile in one of those scopes, you must specify the
VOLATILE attribute in each scope where you require the common block (or one or
more of its elements) to be considered volatile.

If a derived type name is declared volatile, all variables declared with that type are
considered volatile. If an object of derived type is declared volatile, all of its
components are considered volatile. If a component of a derived type is itself
derived, the component does not inherit the volatile attribute from its type. A
derived type name that is declared volatile must have had the VOLATILE attribute
prior to any use of the type name in a type declaration statement.

If a pointer is declared volatile, the storage of the pointer itself is considered
volatile. The VOLATILE attribute has no effect on any associated pointer targets.

If you declare an object to be volatile and then use it in an[EQUIVALENCE
statement, all of the objects that are associated with the volatile object through
equivalence association are considered volatile.

If the actual argument associated with a dummy argument is a variable that is
declared volatile, you must declare the dummy argument volatile if you require
the dummy argument to be considered volatile. If a dummy argument is declared
volatile, and you require the associated actual argument to be considered volatile,
you must declare the actual argument as volatile.

Declaring a statement function as volatile has no effect on the statement function.
Within a function subprogram, the function result variable can be declared volatile.

Any entry result variables will be considered volatile. An ENTRY name must not
be specified with the VOLATILE attribute.

— Attributes Compatible with the VOLATILE Attribute

Statements and Attributes 389

VOLATILE (IBM Extension)

Examples

FUNCTION TEST ()
REAL ONE, TWO, THREE
COMMON /BLOCK1/A, B, C

VOLATILE /BLOCK1/, ONE, TEST
I Common block elements A, B and C are considered volatile
I since common block BLOCK1 is declared volatile.

EQUIVALENCE (ONE, TWO), (TWO, THREE)
! Variables TWO and THREE are volatile as they are equivalenced
I with variabTe ONE which is declared volatile.
END FUNCTION

Related Information

“Direct Access” on page 175

| End of IBM Extension

WHERE

Purpose

The WHERE statement masks the evaluation of expressions and assignments of
values in array assignment statements. It does this according to the value of a
logical array expression. The WHERE statement can be the initial statement of the
WHERE construct.

Syntax

(1)

WHERE— (—mask_expr—) ><

I—where_cons truct_name— :J I—where_ass ignment_statemen tJ

Notes:

1 Fortran 95 (where_construct_name).

mask_expr
is a logical array expression

| Fortran 95

where_construct_name
is a name that identifies the WHERE construct

| End of Fortran 95

Rules

If a where_assignment_statement is present, the WHERE statement is not the first
statement of a WHERE construct. If a where_assignment_statement is absent, the
WHERE statement is the first statement of the WHERE construct, and is referred
to as a WHERE construct statement. An END WHERE statement must follow. See
[“WHERE Construct” on page 104| for more information.

390 XL Fortran Advanced Edition for Mac OS X: Language Reference

WHERE

If the WHERE statement is not the first statement of a WHERE construct, you can
use it as the terminal statement of a DO or DO WHILE construct.

| Fortran 95 |

You can nest WHERE statements within a WHERE construct. A
where_assignment_statement that is a defined assignment must be an elemental
defined assignment.

| End of Fortran 95 |

In each where_assignment_statement, the mask_expr and the variable being defined
must be arrays of the same shape. Each mask_expr in a WHERE construct must
have the same shape.

| Fortran 95 |

A WHERE statement that is part of a where_body_construct must not be a branch
target statement.

| End of Fortran 95 |

The execution of a function reference in the mask_expr of a WHERE statement can
affect entities in the where_assignment_statement.

See [“Interpreting Masked Array Assigenments” on page 106 for information on
interpreting mask expressions.

| Fortran 95 |

If a where_construct_name appears on a WHERE construct statement, it must also
appear on the corresponding END WHERE statement. A construct name is
optional on any masked ELSEWHERE and ELSEWHERE statements in the
WHERE construct.

A where_construct_name can only appear on a WHERE construct statement.

| End of Fortran 95

Examples
REAL, DIMENSION(10) :: A,B,C
! In the following WHERE statement, the LOG of an element of A
! is assigned to the corresponding element of B only if that
I element of A is a positive value.

WHERE (A>0.0) B = LOG(A)

END

| Fortran 95 |

The following example shows an elemental defined assignment in a WHERE
statement:

Statements and Attributes 391

WHERE

INTERFACE ASSIGNMENT(=)
ELEMENTAL SUBROUTINE MY_ASSIGNMENT(X, Y)
LOGICAL, INTENT(OUT) :: X
REAL, INTENT(IN) :: Y
END SUBROUTINE MY_ASSIGNMENT
END INTERFACE

INTEGER A(10)
REAL C(10)
LOGICAL L_ARR(10)

C=(/-10., 15.2, 25.5, -37.8, 274.8, 1.1, -37.8, -36.2, 140.1, 127.4 /)
A=(/1,2,7,8,3,4,9, 10,5, 6/)
L_ARR = .FALSE.
WHERE (A < 5) L ARR = C
! DATA IN ARRAY L_ARR AT THIS POINT:
!
' LARR=F, T, F, F, T, T, F, F, F, F
END
ELEMENTAL SUBROUTINE MY ASSIGNMENT(X, Y)
LOGICAL, INTENT(OUT) :: X
REAL, INTENT(IN) :: Y

IF (Y < 0.0) THEN

X = .FALSE.
ELSE

X = .TRUE.
ENDIF

END SUBROUTINE MY_ASSIGNMENT

| End of Fortran 95

Related Information
* [“"WHERE Construct” on page 104|
+ |"ELSEWHERE” on page 274|
* |"END (Construct)” on page 277 |for details on the END WHERE statement

WRITE

Purpose

The WRITE statement is a data transfer output statement.

Syntax

\4
A

»»—WRITE—(—io_control _list—) |—o
utput_item_list—l

output_item
is an output list item. An output list specifies the data to be transferred. An
output list item can be:

392 XL Fortran Advanced Edition for Mac OS X: Language Reference

WRITE

¢ A variable name. An array is treated as if all of its elements were
specified in the order in which they are arranged in storage.

A pointer must be associated with a target, and an allocatable object
must be allocated. A derived-type object cannot have any ultimate
component that is outside the scoping unit of this statement. The
evaluation of output_item cannot result in a derived-type object that
contains a pointer. The structure components of a structure in a
formatted statement are treated as if they appear in the order of the
derived-type definition; in an unformatted statement, the structure
components are treated as a single value in their internal representation
(including padding).

* An expression

* An implied-DO list, as described under [Implied-DO List” on page 395|

i0_control
is a list that must contain one unit specifier (UNIT=), and can also contain
one of each of the other valid specifiers:

[UNIT=] u
is a unit specifier that specifies the unit to be used in the output operation.
u is an external unit identifier or internal file identifier.

| IBM Extension

An external unit identifier refers to an external file. It is one of the
following:

* An integer expression whose value is in the range 0 through
2,147,483,647.

* An asterisk, which identifies external unit 6 and is preconnected to
standard output.

| End of IBM Extension

An internal file identifier refers to an internal file. It is the name of a
character variable, which cannot be an array section with a vector
subscript.

If the optional characters UNIT= are omitted, u must be the first item in
io_control_list. If UNIT= is specified, FMT= must also be specified.

[FMT=] format
is a format specifier that specifies the format to be used in the output
operation. format is a format identifier that can be:
* The statement label of a FORMAT statement. The FORMAT statement
must be in the same scoping unit.

* The name of a scalar INTEGER(4) or INTEGER(8) variable that was
assigned the statement label of a FORMAT statement. The FORMAT
statement must be in the same scoping unit.

| Fortran 95 |

Fortran 95 does not permit assigning of a statement label.

| End of Fortran 95 |

Statements and Attributes 393

WRITE

* A character constant enclosed in parentheses. Only the format codes
listed under ["FORMAT” on page 293| can be used between the
parentheses. Blank characters can precede the left parenthesis or follow
the right parenthesis.

* A character variable that contains character data whose leftmost
character positions constitute a valid format. A valid format begins with
a left parenthesis and ends with a right parenthesis. Only the format
codes described in the FORMAT statement can be used between the
parentheses. Blank characters can precede the left parenthesis or follow
the right parenthesis. If format is an array element, the format identifier
must not exceed the length of the array element.

* An array of noncharacter intrinsic type. The data must be a valid format
identifier as described under character array.

¢ Any character expression, except one involving concatenation of an
operand that specifies inherited length, unless the operand is the name
of a constant.

* An asterisk, specifying list-directed formatting.

c A specifier that specifies the name of a namelist list that you
have previously defined.

If the optional characters FMT= are omitted, format must be the second
item in io_control_list, and the first item must be the unit specifier with
UNIT= omitted. NML= and FMT= cannot both be specified in the same
output statement.

POS=integer_expr

integer_expr is a scalar integer expression greater than 0. POS= specifies the
file position of the file storage unit to be written in a file connected for
stream access. You must not use POS= for a file that cannot be positioned.

REC= integer_expr

is a record specifier that specifies the number of the record to be written in
a file connected for direct access. The REC= specifier is only permitted for
direct output. integer_expr is an integer expression whose value is positive.
A record specifier is not valid if formatting is list-directed or if the unit
specifier specifies an internal file. The record specifier represents the
relative position of a record within a file. The relative position number of
the first record is 1. You must not specify REC= in data transfer statements
that specify a unit connected for stream access, or use the POS= specifier.

IOSTAT= ios

is an input/output status specifier that specifies the status of the
input/output operation. ios is a scalar variable of type INTEGER(4) or
default integer. Coding the IOSTAT= specifier suppresses error messages.
When the statement finishes execution, ios is defined with:

* A zero value if no error condition occurs

* A positive value if an error occurs.

ERR= stmt_label

is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

IBM Extension

394 XL Fortran Advanced Edition for Mac OS X: Language Reference

WRITE

NUM= integer_variable
is a number specifier that specifies the number of bytes of data transmitted
between the I/0 list and the file. integer_variable is a variable name of type
INTEGER(4), or type default integer. The NUM= specifier is only
permitted for unformatted output. Coding the NUM parameter suppresses
the indication of an error that would occur if the number of bytes
represented by the output list is greater than the number of bytes that can
be written into the record. In this case, integer_variable is set to a value that
is the maximum length record that can be written. Data from remaining
output list items is not written into subsequent records.

| End of IBM Extension |

[NML=] name
is a specifier that specifies the name of a namelist list that you
have previously defined. If the optional characters NML= are not specified,
the namelist name must appear as the second parameter in the list, and the
first item must be the unit specifier with UNIT= omitted. If both NML=
and UNIT= are specified, all the parameters can appear in any order. The
NML= specifier is an alternative to FMT=. Both NML= and FMT= cannot
be specified in the same output statement.

ADVANCE-= char_expr
is an advance specifier that determines whether nonadvancing output
occurs for this statement. char_expr is a character expression that must
evaluate to YES or NO. If NO is specified, nonadvancing output occurs. If
YES is specified, advancing, formatted sequential or formatted stream
output occurs. The default value is YES. ADVANCE-= can be specified only
in a formatted sequential WRITE statement with an explicit format
specification that does not specify an internal file unit specifier.

Implied-DO List

»»—(—do_object list— , —do_variable = arith_exprl, arith_expr2 >

>) <
l—,—l l—ar‘i th_expr3—|

do_object
is an output list item

do_variable
is a named scalar variable of type integer or real

arith_exprl, arith_expr2, and arith_expr3
are scalar numeric expressions

The range of an implied-DO list is the list do_object_list. The iteration count and
values of the DO variable are established from arith_exprl, arith_expr2, and
arith_expr3, the same as for a DO statement. When the implied-DO list is executed,
the items in the do_object_list are specified once for each iteration of the
implied-DO list, with the appropriate substitution of values for any occurrence of
the DO variable.

Statements and Attributes 395

WRITE

Rules

| IBM Extension

If a NUM= specifier is present, neither a format specifier nor a namelist specifier
can be present.

| End of IBM Extension

Variables specified for the IOSTAT= and NUM= specifiers must not be associated
with any output list item, namelist list item, or DO variable of an implied-DO list.
If such a specifier variable is an array element, its subscript values must not be
affected by the data transfer, any implied-DO processing, or the definition or
evaluation of any other specifier.

If the ERR= and IOSTAT= specifiers are set and an error is encountered during a
synchronous data transfer, transfer is made to the statement specified by the ERR=
specifier and a positive integer value is assigned to ios.

| IBM Extension

If a conversion error is encountered and the CNVERR run-time option is set to
NO, ERR= is not branched to, although IOSTAT= may be set.

If IOSTAT= and ERR= are not specified,
* The program stops if a severe error is encountered.

e The program continues to the next statement if a recoverable error is
encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

¢ The program continues to the next statement when a conversion error is
encountered if the ERR_RECOVERY run-time option is set to YES. If the
CNVERR run-time option is set to YES, conversion errors are treated as
recoverable errors; when CNVERR=NO, they are treated as conversion errors.

| End of IBM Extension

PRINT format has the same effect as WRITE (*, format).

Examples
WRITE (6,FMT='(10F8.2)"') (LOG(A(I)),I=1,N+9,K),G

Related Information

» |Implementation Details of XL Fortran Input/Output|in the [User’s Guide|
* |“Conditions and IOSTAT Values” on page 181
* [“Understanding XL Fortran Input/Output” on page 173|
* |"READ” on page 351
* |Setting Run-time Options for Input/Output|in the

+ ['Deleted Features” on page 606|

396 XL Fortran Advanced Edition for Mac OS X: Language Reference

General Directives

| IBM Extension |

This section provides an alphabetical reference to directives that apply to all
platforms. For a detailed description of directives exclusive to the PowerPC
platform, see [‘Hardware-Specific Directives” on page 573 This section contains the
following sections:

+ [“Comment and Noncomment Form Directives”|

* |“Directives and Optimization” on page 399

* [“Detailed Directive Descriptions” on page 400|

Comment and Noncomment Form Directives

XL Fortran directives belong to one of two groups: omment form directives| and
inoncomment form directives|

Comment Form Directives

This section provides a detailed description of the following comment form

directives:
|COLLAPS§ |SNAPSHO l |
SOURCEFORM |SUBSCRIPTORDER|

Additional comment form directives included in this section can be found in
[“Directives and Optimization” on page 399

Format

A\
A

»>—trigger_head—trigger_constant—directive

trigger_head
is one of !, *, C, or c for fixed source form and ! for free source form.

trigger_constant
is IBM* by default. Specifying the compiler option will allow

you to define other trigger constants.

Rules
The default value for the trigger_constant is IBM*.

You can specify an alternate or additional trigger_constant with the -qdirective
compiler option. See the compiler option in the for more
details.

The compiler treats all comment form directives, with the exception of those using

the default trigger_constant as comments, unless you define the appropriate
trigger_constant using the -qdirective compiler option.

© Copyright IBM Corp. 1990, 2003 397

IBM Extension

XLF directives include directives that are common to other vendors. If you use
these directives in your code, you can enable whichever trigger_constant that
vendor has selected. Specifying the trigger constant by using the -qdirective
compiler option will enable the trigger_constant the vendor has selected. Refer to
the compiler option in the for details on specifying

alternative trigger_constants.

The trigger_head follows the rules of comment lines either in Fortran 90 free source
form or fixed source form. If the trigger_head is !, it does not have to be in column
1. There must be no blanks between the trigger_head and the trigger_constant.

You can specify the directive_trigger (defined as the trigger_head combined with the
trigger_constant, 'IBM* for example) and any directive keywords in uppercase,
lowercase, or mixed case.

You can specify inline comments on directive lines.

I'ITBM* INDEPENDENT,
NEW (1) IThis is a comment

A directive cannot follow another statement or another directive on the same line.

All comment form directives can be continued. You cannot embed a directive
within a continued statement, nor can you embed a statement within a continued
directive.

You must specify the directive_trigger on all continuation lines. However, the
directive_trigger on a continuation line need not be identical to the directive_trigger
that is used in the continued line. For example:

!TBM= INDEPENDENT &

ITRIGGER& , REDUCTION (X) &
IIBM#& , NEW (I)

The above is equivalent to:
!TBM* INDEPENDENT,
REDUCTION (X), NEW (I)

provided both IBM* and TRIGGER are active trigger_constants.

For more information, see ["Lines and Source Formats” on page 11.|

You can specify a directive as a free source form or fixed source form comment,
depending on the current source form.

Fixed Source Form Rules: If the trigger_head is one of C, ¢, or ¥, it must be in
column 1.

The maximum length of the trigger_constant in fixed source form is 4 for directives
that are continued on one or more lines. This rule applies to the continued lines
only, not to the initial line. Otherwise, the maximum length of the trigger_constant
is 15. We recommend that initial line triggers have a maximum length of 4. The
maximum allowable length of 15 is permitted for the purposes of backwards
compatibility.

If the trigger_constant has a length of 4 or less, the first line of a comment directive

must have either white space or a zero in column 6. Otherwise, the character in
column 6 is part of the trigger_constant.

398 XL Fortran Advanced Edition for Mac OS X: Language Reference

IBM Extension

The directive_trigger of a continuation line of a comment directive must appear in
columns 1-5. Column 6 of a continuation line must have a character that is neither
white space nor a zero.

For more information, see ["Fixed Source Form” on page 12

Free Source Form Rules: The maximum length of the trigger_constant is 15.

An ampersand (&) at the end of a line indicates that the directive will continue.
When you continue a directive line, a directive_trigger must appear at the beginning
of all continuation lines. If you are beginning a continuation line with an
ampersand, the directive_trigger must precede the ampersand. For example:

IIBM+ INDEPENDENT &

IIBM*& , REDUCTION (X) &
1IBM*& , NEW (I)

For more information, see [“Free Source Form” on page 15]

Noncomment Form Directives
This section provides a detailed description of the following noncomment form

directives:
[Erecq [INCLUDE
| FLINE @PROCESS
Format
»»—directive »<
Rules

The compiler always recognizes noncomment form directives.
Noncomment form directives cannot be continued.
Additional statements cannot be included on the same line as a directive.

Source format rules concerning white space apply to directive lines.

Directives and Optimization

The following are |c0rnment form directives| useful for optimizing source code. See
the |User’s Guide| for information on [optimizing XL Fortran programs|and the
lcompiler optiong| that affect performance.

Assertive Directives

Assertive directives gather information about source code that is otherwise
unavailable to the compiler. Providing this information can increase performance.

|ASSERT| |CNCALL|
[INDEPENDENT]| PERMUTATIO

General Directives 399

IBM Extension

Directives for Loop Unrolling

The following directives provide different methods of loop unrolling to optimize
the effectives of the DO CONSTRUCT|in source code:

[STREAM_UNROLL| [UNROLL)

[UNROLL_AND_FUSH

Detailed Directive Descriptions

ASSERT

The ASSERT directive provides information to the compiler about the
characteristics of DO loops. This assists the compiler in optimizing the source
code.

The directive only takes effect if you specify the -qhot compiler option.

Syntax

»>—ASSERT—(—assertion list—) ><

assertion
is ITERCNT(n) or NODEPS. ITERCNT(n) and NODEPS are not mutually
exclusive, and you can specify both for the same DO loop. You can use at
most one of each argument for the same DO loop.

ITERCNT(n)
where 7 specifies the number of iterations for a given DO loop. n
must be a positive, scalar, integer initialization expression.

NODEPS
specifies that no loop-carried dependencies exist within a given
DO loop.

Rules

The first noncomment line (not including other directives) following the ASSERT
directive must be a DO loop. This line cannot be an infinite DO or DO WHILE
loop. The ASSERT directive applies only to the DO loop immediately following
the directive, and not to any nested DO loops.

ITERCNT provides an estimate to the compiler about roughly how many
iterations the DO loop will typically run. There is no requirement that the value be
accurate; ITERCNT will only affect performance, never correctness.

When NODEPS is specified, the user is explicitly declaring to the compiler that no
loop-carried dependencies exist within the DO loop or any procedures invoked
from within the DO loop. A loop-carried dependency involves two iterations
within a DO loop interfering with one another. Interference occurs in the following
situations:

* Two operations that define, undefine, or redefine the same atomic object (data
that has no subobjects) interfere.

¢ Definition, undefinition, or redefinition of an atomic object interferes with any
use of the value of the object.

400 XL Fortran Advanced Edition for Mac OS X: Language Reference

ASSERT

* Any operation that causes the association status of a pointer to become defined
or undefined interferes with any reference to the pointer or any other operation
that causes the association status to become defined or undefined.

* Transfer of control outside the DO loop or execution of an EXIT, STOP, or
PAUSE statement interferes with all other iterations.

* If any two input/output (I/O) operations associated with the same file or
external unit interfere with each other. The exceptions to this rule are:

— If the two I/O operations are two INQUIRE statements; or

— If the two I/O operations are accessing distinct areas of a stream access file;
or

— If the two I/O operations are accessing distinct records of a direct access file.

* A change in the allocation status of an allocatable object between iterations
causes interference.

It is possible for two complementary ASSERT directives to apply to any given DO
loop. However, an ASSERT directive cannot be followed by a contradicting
ASSERT directive for a given DO loop:

ITBM# ASSERT (ITERCNT(10))
1IBM* INDEPENDENT, REDUCTION (A)
ITBM* ASSERT (ITERCNT(20)) ! invalid
D0I=1,N
A(I) = A(I) * I
END DO

In the example above, the ASSERTITERCNT(20)) directive contradicts the
ASSERT(ITERCNT(10)) directive and is invalid.

The ASSERT directive overrides the -qassert compiler option for the DO loop on
which the ASSERT directive is specified.

Examples
Example 1:

! An example of the
ASSERT directive with NODEPS.
PROGRAM EX1
INTEGER A(100)
1 IBM=* ASSERT (NODEPS)
DO I =1, 100
A(I) = A(I) = FNC1(I)
END DO
END PROGRAM EX1

FUNCTION FNC1(I)
FNCL = T = I
END FUNCTION FNC1

Example 2:

! An example of the ASSERT directive with NODEPS and
ITERCNT.
SUBROUTINE SUB2 (N)
INTEGER A(N)
ITBM* ASSERT (NODEPS,ITERCNT(100))
DOI =1, N
A(I) = A(I) * FNC2(I)
END DO
END SUBROUTINE SUB2

General Directives 401

ASSERT

FUNCTION FNC2 (I)
FNC2 = T % I
END FUNCTION FNC2

Related Information

* |-qassert Option| in the |User’s Guidel
+ |-qdirective|in the |User’s Guide
+ |-ghot Option|in the |User’s Guide|

* |"DO” on page 263

CNCALL

When the CNCALL directive is placed before a DO loop, you are explicitly
declaring to the compiler that no loop-carried dependencies exist within any
procedure called from the DO loop.

The directive only takes effect if you specify the -ghot compiler option.

Syntax

»>—CNCALL

v
A

Rules

The first noncomment line (not including other directives) that is following the
CNCALL directive must be a DO loop. This line cannot be an infinite DO or DO
WHILE loop. The CNCALL directive applies only to the DO loop that is
immediately following the directive and not to any nested DO loops.

When specifying the CNCALL directive, you are explicitly declaring to the
compiler that no procedures invoked within the DO loop have any loop-carried
dependencies. If the DO loop invokes a procedure, separate iterations of the loop
must be able to concurrently call that procedure. The CNCALL directive does not
assert that other operations in the loop do not have dependencies, it is only an
assertion about procedure references.

A loop-carried dependency occurs when two iterations within a DO loop interfere
with one another. See the JASSERT] directive for the definition of interference.

Examples

! An example of CNCALL where the procedure invoked has
! no Toop-carried dependency but the code within the
! DO Toop itself has a loop-carried dependency.
PROGRAM EX3
INTEGER A(100)
ITBM* CNCALL

DO I =1, N

A(I) = A(I) = FNC3(I)

A(I) = A(I) + A(I-1) ! This has loop-carried dependency
END DO

END PROGRAM EX3
FUNCTION FNC3 (I)

FNC3 =1 * I
END FUNCTION FNC3

402 XL Fortran Advanced Edition for Mac OS X: Language Reference

CNCALL

Related Information
+ ["'INDEPENDENT” on page 406|

* [qdirective]in the [User’s Guidd

* [-qhot Optionin the
* |"DO” on page 263|

COLLAPSE

The COLLAPSE directive reduces an entire array dimension to a single element by
specifying that only the element in the lower bound of an array dimension is
accessible. If you do not specify a lower bound, the default lower bound is one.

Used with discretion, the COLLAPSE directive can facilitate an increase in
performance by reducing repetitive memory access associated with
multiple-dimension arrays.

Syntax

A\
A

»>—COLLAPSE—(—collapse_array list—)

where collapse_array is:

A\
A

»>—array_name—(—expression_list—)

where expression_list is a comma separated list of expression.

array name
is the array name.

expression
is a constant scalar integer expression. You may only specify positive
integer values.

Rules
The COLLAPSE directive must contain at least one array.

The COLLAPSE directive applies only to the scoping unit in which it is specified.
The declarations of arrays contained in a COLLAPSE directive must appear in the
same scoping unit as the directive. An array that is accessible in a scoping unit by
use or host association must not specified in a COLLAPSE directive in that
scoping unit.

The lowest value you can specify in expression_list is one. The highest value must
not be greater than the number of dimensions in the corresponding array.

A single scoping unit can contain multiple COLLAPSE declarations, though you
can only specify an array once for a particular scoping unit.

You can not specify an array in both a COLLAPSE directive and an
EQUIVALENCE statement.

General Directives 403

COLLAPSE

You can not use the COLLAPSE directive with arrays that are components of
derived types.

If you apply both the COLLAPSE and SUBSCRIPTORDER directives to an array,
you must specify the SUBSCRIPTORDER directive first.

The COLLAPSE directive applies to:
* Assumed-shape arrays in which all lower bounds must be constant expressions.

* Explicit-shape arrays in which all lower bounds must be constant expressions.

Examples

Example 1: In the following example, the COLLAPSE directive is applied to the
explicit-shape arrays A and B. Referencing A(1,2:100,2:100) and B(m,2:100,2:100) in
the inner loops, become A(m,1,1) and B(m,1,1).

1IBM* COLLAPSE(A(2,3),B(2,3))
REAL*8 A(5,100,100), B(5,100,100), c(5,100,100)

D0 I=1,100
DO J=1,100
DO M=1,5

A(M,J,1)
B(M,J,I)
END DO
DO M=1,5
DO N=1,M
C(M,J,1) = C(M,J,1I) + A(N,J,I)*B(6-N,J,I)
END DO
END DO
END DO
END DO
END

SIN(C(M,J,1))
C0oS(C(M,J,1))

Related Information
For more information on the SUBSCRIPTORDER directive,
sed”SUBSCRIPTORDER” on page 415|

EJECT

EJECT directs the compiler to start a new full page of the source listing. If there
has been no source listing requested, the compiler will ignore this directive.

Syntax

»»—EJECT >

Rules

The EJECT compiler directive can have an inline comment and a label. However, if
you specify a statement label, the compiler discards it. Therefore, you must not
reference any label on an EJECT directive. An example of using the directive
would be placing it before a DO loop that you do not want split across pages in
the listing. If you send the source listing to a printer, the EJECT directive provides
a page break.

INCLUDE

The INCLUDE compiler directive inserts a specified statement or a group of
statements into a program unit.

404 XL Fortran Advanced Edition for Mac OS X: Language Reference

INCLUDE

Syntax

»—INCLUDE—[char literal constant |
—name—)4I l——l

name, char_literal_constant (delimiters are optional)
specifies filename, the name of an include file

You are not required to specify the full path of the desired file, but must
specify the file extension if one exists.

name must contain only characters allowable in the XL Fortran character
set. See [“Characters” on page 9| for the character set supported by XL
Fortran.

char_literal_constant is a character literal constant.

n is the value the compiler uses to decide whether to include the file during
compilation. It can be any number from 1 through 255, and cannot specify
a kind type parameter. If you specify 1, the compiler includes the file only
if the number appears as a suboption in the -qci (conditional include)
compiler option. If you do not specify #, the compiler always includes the
file.

A feature called conditional INCLUDE provides a means for selectively activating
INCLUDE compiler directives within the Fortran source during compilation. You
specify the included files by means of the -qci compiler option.

In fixed source form, the INCLUDE compiler directive must start after column 6,
and can have a label.

You can add an inline comment to the INCLUDE line.

Rules

An included file can contain any complete Fortran source statements and compiler
directives, including other INCLUDE compiler directives. Recursive INCLUDE
compiler directives are not allowed. An END statement can be part of the included
group. The first and last included lines must not be continuation lines. The
statements in the include file are processed with the source form of the including
file.

If the SOURCEFORM directive appears in an include file, the source form reverts
to that of the including file once processing of the include file is complete. After
the inclusion of all groups, the resulting Fortran program must follow all of the
Fortran rules for statement order.

For an INCLUDE compiler directive with the left and right parentheses syntax, XL
Fortran translates the file name to lowercase unless the -qmixed compiler option is
on.

The file system locates the specified filename as follows:

* If the first nonblank character of filename is /, filename specifies an absolute file
name.

* If the first nonblank character is not /, the operating system searches directories
in order of decreasing priority:

General Directives 405

INCLUDE

— If you specify any -I compiler option, filename is searched for in the directories
specified.
— If the operating system cannot find filename then it searches:
- the current directory for file filename.
- the resident directory of the compiling source file for file filename.
- directory /x1f/8.1/include for file filename.

Examples

INCLUDE '/u/userid/dc101’ ! full absolute file name specified
INCLUDE '/u/userid/dc102.inc' ! INCLUDE file name has an extension
INCLUDE 'userid/dc103" ! relative path name specified

INCLUDE (ABCdef) ! includes file abcdef

INCLUDE '../Abc' ! includes file Abc from parent directory

I of directory being searched

Related Information
kqci Option|in the [User’s Guide|

INDEPENDENT

The INDEPENDENT directive, if used, must precede a DO loop, FORALL
statement, or FORALL construct. It specifies that each operation in the FORALL
statement or FORALL construct, can be executed in any order without affecting
the semantics of the program. It also specifies each iteration of the DO loop, can be
executed without affecting the semantics of the program.

The directive only takes effect if you specify the -qghot compiler option.

Syntax

»>—INDEPENDENT—

Y
A

»—NEW— (—named _variable list—)
,—REDUCTION—(—named_variable list—)—

Rules

The first noncomment line (not including other directives) following the
INDEPENDENT directive must be a DO loop, FORALL statement, or the first
statement of a FORALL construct. This line cannot be an infinite DO or DO
WHILE loop. The INDEPENDENT directive applies only to the DO loop that is
immediately following the directive and not to any nested DO loops.

An INDEPENDENT directive can have at most one NEW clause and at most one
REDUCTION clause.

If the directive applies to a DO loop, no iteration of the loop can interfere with any
other iteration. Interference occurs in the following situations:

* Two operations that define, undefine, or redefine the same atomic object (data
that has no subobjects) interfere, unless the parent object appears in the NEW
clause or REDUCTION clause. You must define nested DO loop index variables
in the NEW clause.

406 XL Fortran Advanced Edition for Mac OS X: Language Reference

INDEPENDENT

* Definition, undefinition, or redefinition of an atomic object interferes with any
use of the value of the object. The exception is if the parent object appeared in
the NEW clause or REDUCTION clause.

* Any operation that causes the association status of a pointer to become defined
or undefined interferes with any reference to the pointer or any other operation
that causes the association status to become defined or undefined.

* Transfer of control outside the DO loop or execution of an EXIT, STOP, or
PAUSE statement interferes with all other iterations.

* If any two I/O operations associated with the same file or external unit interfere
with each other. The exceptions to this rule are:

— If the two I/O operations are two INQUIRE statements; or

— If the two I/O operations are accessing distinct areas of a stream access file;
or.

— If the two I/O operations are accessing distinct records of a direct access file.

* A change in the allocation status of an allocatable object between iterations
causes interference.

If the NEW clause is specified, the directive must apply to a DO loop. The NEW
clause modifies the directive and any surrounding INDEPENDENT directives by
accepting any assertions made by such directive(s) as true. It does this even if the
variables specified in the NEW clause are modified by each iteration of the loop.
Variables specified in the NEW clause behave as if they are private to the body of
the DO loop. That is, the program is unaffected if these variables (and any
variables associated with them) were to become undefined both before and after
each iteration of the loop.

Any variable you specify in the NEW clause or REDUCTION clause must not:
* Be a dummy argument

* Be a pointee

* Be use-associated or host-associated

* Be a common block variable

* Have either the SAVE or STATIC attribute

* Have either the POINTER or TARGET attribute

e Appear in an EQUIVALENCE statement

For FORALL, no combination of index values affected by the INDEPENDENT
directive assigns to an atomic storage unit that is required by another combination.
If a DO loop, FORALL statement, or FORALL construct all have the same body
and each is preceded by an INDEPENDENT directive, they behave the same way.

The REDUCTION clause asserts that updates to named variables will occur within
REDUCTION statements in the INDEPENDENT loop. Furthermore, the
intermediate values of the REDUCTION variables are not used within the parallel
section, other than in the updates themselves. Thus, the value of the REDUCTION
variable after the construct is the result of a reduction tree.

If you specify the REDUCTION clause, the directive must apply to a DO loop.
The only reference to a REDUCTION variable in an INDEPENDENT DO loop

must be within a reduction statement.

A REDUCTION variable must be of intrinsic type, but must not be of type
character. A REDUCTION variable must not be an allocatable array.

General Directives 407

INDEPENDENT

A REDUCTION variable must not occur in:
e A NEW clause in the same INDEPENDENT directive

e A NEW or REDUCTION clause in an INDEPENDENT directive in the body of
the following DO loop

A REDUCTION statement can have one of the following forms:

v
A

»—reduction_var_ref—=—expr—reduction_op—reduction_var_ref-

v
A

»—reduction_var_ref—=—reduction_var_ref—reduction_op—expr

»>—reduction_var_ref =—reduction_function—(expr,—reduction_var_ref) ———»<

»>—reduction _var_ref =—reduction_function—(reduction var_ref,—expr)———»<

where:

reduction_var_ref
is a variable or subobject of a variable that appears in a REDUCTION
clause

reduction_op
is one of: +, —, *, .AND., .OR., .EQV., .NEQV,, or .XOR.

reduction_function
is one of: MAX, MIN, IAND, IOR, or IEOR

The following rules apply to REDUCTION statements:

1. A reduction statement is an assignment statement that occurs in the range of an
INDEPENDENT DO loop. A variable in the REDUCTION clause must only
occur in a REDUCTION statement within the INDEPENDENT DO loop.

2. The two reduction_var_refs that appear in a REDUCTION statement must be
lexically identical.

3. The syntax of the INDEPENDENT directive does not allow you to designate
an array element or array section as a REDUCTION variable in the
REDUCTION clause. Although such a subobject may occur in a REDUCTION
statement, it is the entire array that is treated as a REDUCTION variable.

4. You cannot use the following form of the REDUCTION statement:

»>—reduction_var_ref— = —expr— - —reduction_var_ref ><
Examples
Example 1:
INTEGER A(10),B(10,12),F
ITBM* INDEPENDENT ! The NEW clause cannot be

FORALL (I=1:9:2) A(I)=A(I+1) I specified before a FORALL
ITBM* INDEPENDENT, NEW(J)
DO M=1,10

408 XL Fortran Advanced Edition for Mac OS X: Language Reference

#LINE

INDEPENDENT

J=F (M) 1 'J' is used as a scratch
A(M)=J*J ! variable in the loop
I TBM* INDEPENDENT, NEW(N)
DO N=1,12 I The first executable statement
B(M,N)=M+N*N ! following the INDEPENDENT must

END DO ! be either a DO or FORALL

END DO

END

Example 2:
X=0
1IBM+ INDEPENDENT, REDUCTION(X)
D0OJ =1, M
X = X + J**2
END DO

Example 3:

INTEGER A(100), B(100, 100)
IIBM* INDEPENDENT, REDUCTION(A), NEW(J) I Example showing an array used
DO I=1,100 ! for a reduction variable
DO J=1, 100
A(I)=A(I)+B(J, I)
END DO
END DO

Related Information

* [“DO Construct” on page 121|

+ [“FORALL” on page 289

. in the

. in the

The #line directive associates code that is created by cpp or any other Fortran
source code generator with input code created by the programmer. Because the
preprocessor may cause lines of code to be inserted or deleted, the #line directive
can be useful in error reporting and debugging because it identifies which lines in
the original source caused the preprocessor to generate the corresponding lines in
the intermediate file.

Syntax

v
A

»>—i1ine—Lline_number
l—fi Zename—|

The #line directive is a noncomment directive and follows the syntax rules for this
type of directive.

line_number
is a positive, unsigned integer literal constant without a KIND parameter.
You must specify line_number.

filename
is a character literal constant, with no kind type parameter. The filename
may specify a full or relative path. The filename as specified will be

General Directives 409

#line

recorded for use later. If you specify a relative path, when you debug the
program the debugger will use its directory search list to resolve the
filename.

Rules
The #line directive follows the same rules as other noncomment directives, with
the following exceptions:

* You cannot have Inline comments on the same line as the #line directive.
* White space is optional between the # character and line in free source form.

* White space may not be embedded between the characters of the word line in
fixed or free source forms.

* The #line directive can start anywhere on the line in fixed source form.

The #line directive indicates the origin of all code following the directive in the
current file. Another #line directive will override a previous one.

If you supply a filename, the subsequent code in the current file will be as if it
originated from that filename. If you omit the filename, and no previous #line
directive with a specified filename exists in the current file, the code in the current
file is treated as if it originated from the current file at the line number specified. If
a previous #line directive with a specified filename does exist in the current file, the
filename from the previous directive is used.

line_number indicates the position, in the appropriate file, of the line of code
following the directive. Subsequent lines in that file are assumed to have a one to
one correspondence with subsequent lines in the source file until another #line
directive is specified or the file ends.

When XL Fortran invokes cpp for a file, the preprocessor will emit #line directives
unless you also specify the -d option.

Examples
The file test.F contains:

I File test.F, Line 1
#include "test.h"
PRINT*, "test.F Line 3"

PRINT*, "test.F Line 6"
#include "test.h"
PRINT*, "test.F Line 8"
END

The file test.h contains:

I File test.h line 1
RRINT=*,1 I Syntax Error
PRINT*,2

After the C preprocessor (/lib/cpp) processes the file test.F with the default options:

#1ine 1 "test.F"

! File test.F, Line 1

#1ine 1 "test.h"

! File test.h Line 1

RRINT=*,1 I Syntax Error
PRINT*,2

#line 3 "test.F"

PRINT*, "test.F Line 3"

#1ine 6

410 XL Fortran Advanced Edition for Mac OS X: Language Reference

#line

PRINT*, "test.F Line 6"

#line 1 "test.h"

I File test.h Line 1

RRINT=*,1 ! Syntax Error
PRINT*,2

#line 8 "test.F"

PRINT*, "test.F Line 8"

END

The compiler displays the following messages after it processes the file that is
created by the C preprocessor:

2 2 |RRINT*,1

ISyntax error

...... A
a - "test.h", line 2.6: 1515-019 (S) Syntax is incorrect.

4 2 |RRINT=,1 1Syntax error
...... -
a - "test.h", line 2.6: 1515-019 (S) Syntax is incorrect.

Related Information
« |-d Option|in the [User’s Guide|
» |Passing Fortran Files through the C Preprocessoi| in the

PERMUTATION
The PERMUTATION directive specifies that the elements of each array that is
listed in the integer_array_name_list have no repeated values. This directive is useful
when you use array elements as subscripts for other array references.

The PERMUTATION directive only takes effect if you specify the -qhot compiler
option.

Syntax

»»>—PERMUTATION—(—integer_array_name_list—) ><

integer_array_name
is an integer array with no repeated values.

Rules

The first noncomment line (not including other directives) that is following the
PERMUTATION directive must be a DO loop. This line cannot be an infinite DO
or DO WHILE loop. The PERMUTATION directive applies only to the DO loop
that is immediately following the directive, and not to any nested DO loops.

Examples
PROGRAM EX3
INTEGER A(100), B(100)
LIBMx PERMUTATION (A)

DO I =1, 100

A(I) =1

B(A(I)) = B(A(I)) + A(I)
END DO

END PROGRAM EX3

General Directives 411

PERMUTATION

Related Information
* |-ghot Option| in the |User’s Guide]
 |"DO” on page 263

@PROCESS

You can specify compiler options to affect an individual compilation unit by
putting the @PROCESS compiler directive in the source file. It can override
options that are specified in the configuration file, in the default settings, or on the
command line.

Syntax

]

»»—QPROCESS——option

Y
A

l—(—suboption_lz'st—)—|

option is the name of a compiler option, without the -q

suboption
is a suboption of a compiler option

Rules
In fixed source form, @PROCESS can start in column 1 or after column 6. In free
source form, the @PROCESS compiler directive can start in any column.

You cannot place a statement label or inline comment on the same line as an
@PROCESS compiler directive.

By default, any option settings you designate with the @PROCESS compiler
directive are effective only for the compilation unit in which the statement appears.
If the file has more than one compilation unit, the option setting is reset to its
original state before the next unit is compiled. Trigger constants specified by the
DIRECTIVE option are in effect until the end of the file (or until NODIRECTIVE
is processed).

The @PROCESS compiler directive must usually appear before the first statement
of a compilation unit. The only exceptions are for SOURCE and NOSOURCE,
which you can put in @PROCESS directives anywhere in the compilation unit.

Related Information

See |Compiler Option Detaz’l§| in the for details on compiler options.
SNAPSHOT

You can use the SNAPSHOT directive to specify a safe location where a
breakpoint can be set with a debug program, and provide a set of variables that
must remain visible to the debug program.

There may be a slight performance hit at the point where the SNAPSHOT
directive is set, because the variables must be kept in memory for the debug
program to access. Variables made visible by the SNAPSHOT directive are
read-only. Undefined behavior will occur if these variables are modified through
the debugger. Use with discretion.

412 XL Fortran Advanced Edition for Mac OS X: Language Reference

SNAPSHOT

Syntax

»»>—SNAPSHOT— (—named_variable_list—) ><

named_variable
is a named variable that must be accessible in the current scope.

Rules
To use the SNAPSHOT directive, you must specify the -qdbg compiler option at
compilation.

Related Information
See the |User’s Guide| for details on the compiler option.

SOURCEFORM
The SOURCEFORM compiler directive indicates that all subsequent lines are to be
processed in the specified source form until the end of the file is reached or until
an @PROCESS directive or another SOURCEFORM directive specifies a different
source form.

Syntax

A\
A

»»—SOURCEFORM— (—source—)

source is one of the following: FIXED, FIXED(right_margin), FREE(F90),
FREE(IBM), or FREE. FREE defaults to FREE(F90).

right_margin
is an unsigned integer specifying the column position of the right
margin. The default is 72. The maximum is 132.

Rules

The SOURCEFORM directive can appear anywhere within a file. An include file is
compiled with the source form of the including file. If the SOURCEFORM
directive appears in an include file, the source form reverts to that of the including
file once processing of the include file is complete.

The SOURCEFORM directive cannot specify a label.

General Directives 413

SOURCEFORM

— Tip
To modify your existing files to Fortran 90 free source form where include
files exist:

1. Convert your include files to Fortran